浏览全部资源
扫码关注微信
上海交通大学 上海市电气绝缘与热老化重点实验室 上海 200240
E-mail: xyhuang@sjtu.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-06-30,
收稿日期:2021-02-01,
修回日期:2021-02-26,
扫 描 看 全 文
王思琦,陈杰,朱荧科等.丝素蛋白膜在高电场下的介电性能[J].高分子学报,2021,52(09):1148-1155.
Wang Si-qi,Chen Jie,Zhu Ying-ke,et al.High Field Dielectric Properties of Silk Fibroin Films[J].ACTA POLYMERICA SINICA,2021,52(09):1148-1155.
王思琦,陈杰,朱荧科等.丝素蛋白膜在高电场下的介电性能[J].高分子学报,2021,52(09):1148-1155. DOI: 10.11777/j.issn1000-3304.2021.21037.
Wang Si-qi,Chen Jie,Zhu Ying-ke,et al.High Field Dielectric Properties of Silk Fibroin Films[J].ACTA POLYMERICA SINICA,2021,52(09):1148-1155. DOI: 10.11777/j.issn1000-3304.2021.21037.
丝素蛋白的分子结构兼具软段和硬段,且其结构单元具有较大的偶极矩(3.5D),在介电储能领域可能具有应用潜力. 本文表征了丝素蛋白薄膜的在高电场下的介电性能,并研究了丝素蛋白的分子结构与高电场下介电性能的关系. 结果显示,丝素蛋白的二级结构变化与其高场介电行为关系密切,
β
-折叠结构增加有利于提高击穿强度,降低介电损耗. 通过调整薄膜的制备工艺优化了丝素蛋白薄膜的高场介电性能,优化后的丝素蛋白膜在500 MV/m的电场下放电能量密度可达7.43 J/cm
3
,充-放电效率为79.8%. 本工作为开拓丝素蛋白在介电领域的应用提供了基础数据,并为进一步优化分子结构提供了参考.
Silk fibroin shows promising potential in dielectric and electrical energy storage application since that its structure unit has a large dipole moment (3.5 D) and its molecular structure has both soft and hard segments. In this study
for the first time
the dielectric properties of silk fibroin film under high electrical fields are investigated and the emphasis is given on the relationship between secondary structures and dielectric properties under high electrical fields. The results show that under high electrical fields
the change in the secondary structures of the silk fibroin is closely associated with its dielectric behavior. Specifically
the increase of the
β
-sheet structure is beneficial for the electrical strength enhancement and suppressing the dielectric loss of silk fibroin film. In addition
the high-field dielectric properties are significantly boosted by optimizing the preparation process of the silk fibroin film. The optimized film has a discharge energy density of 7.43 J/cm
3
and a charge-discharge efficiency of 79.8% under an electrical field of 500 MV/m
which demonstrates a promissing energy storage capability. This work provides basic data for exploring the application of silk fibroin in the dielectric field and also gives reference for further optimization of molecular structure in the future.
丝素蛋白高电场介电性能储能性能
Silk fibroinHigh electric fieldDielectric propertiesEnergy storage properties
Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K. Prog Mater Sci, 2019, 100: 187-225. doi:10.1016/j.pmatsci.2018.10.003http://dx.doi.org/10.1016/j.pmatsci.2018.10.003
Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q. Nature, 2015, 523(7562): 576-579. doi:10.1038/nature14647http://dx.doi.org/10.1038/nature14647
Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K. Adv Energy Mater, 2019, 9(36): 1901826. doi:10.1002/aenm.201901826http://dx.doi.org/10.1002/aenm.201901826
Barshaw E J, White J, Chait M J, Cornette J B, Bustamante J, Folli F, Biltchick D, Borelli G, Picci G, Rabuffi M. IEEE T Magn, 2007, 43(1): 223-225. doi:10.1109/tmag.2006.887682http://dx.doi.org/10.1109/tmag.2006.887682
Li Q, Yao F Z, Liu Y, Zhang G Z, Wang H, Wang Q. Ann Rev Mater Res, 2018, 48(1): 219-243. doi:10.1146/annurev-matsci-070317-124435http://dx.doi.org/10.1146/annurev-matsci-070317-124435
Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H. Adv Mater, 2015, 27(42): 6658-6663. doi:10.1002/adma.201503186http://dx.doi.org/10.1002/adma.201503186
Yu L, Hu X, Kaplan D L, Cebe P. Biomacromolecules, 2010, 11(10): 2766-2775. doi:10.1021/bm1008316http://dx.doi.org/10.1021/bm1008316
Zheng Jinhuan(郑今欢) , Shao Jianzhong(邵建中) , Liu Jinqiang(刘今强). Acta Polymerica Sinica(高分子学报), 2002, (6): 795-823. doi:10.3321/j.issn:1000-3304.2002.06.023http://dx.doi.org/10.3321/j.issn:1000-3304.2002.06.023
Nguyen A T, Huang Q L, Yang Z, Lin N, Xu G, Liu X Y. Small, 2015, 11(9-10): 1039-1054. doi:10.1002/smll.201402985http://dx.doi.org/10.1002/smll.201402985
Chen Hong(陈红), Shao Zhengzhong(邵正中). Acta Polymerica Sinica(高分子学报), 2018, (8): 987-996. doi:10.11777/j.issn1000-3304.2018.18083http://dx.doi.org/10.11777/j.issn1000-3304.2018.18083
Pei Y Z, Liu X, Liu S S, Lu Q, Liu J, Kaplan D L, Zhu H S. Acta Biomater, 2015, 13:168-176. doi:10.1016/j.actbio.2014.11.016http://dx.doi.org/10.1016/j.actbio.2014.11.016
Sang Y H, Li M R, Liu J J, Yao Y L, Ding Z Z, Wang L L, Xiao L Y, Lu Q, Fu X B, Kaplan D L. ACS Appl Mater Interfaces, 2018, 10(11): 9290-9300. doi:10.1021/acsami.7b19204http://dx.doi.org/10.1021/acsami.7b19204
Fan Suna(范苏娜), Chen Jie(陈杰), Gu Zhanghong(顾张弘), Yao Xiang(姚响), Zhang Yaopeng(张耀鹏). Acta Polymerica Sinica(高分子学报), 2021, 52(1): 29-46. doi:10.11777/j.issn1000-3304.2020.20172http://dx.doi.org/10.11777/j.issn1000-3304.2020.20172
Wen Jianchuan(文建川), Yao Jinrong(姚晋荣), Shao Zhengzhong(邵正中). Acta Polymerica Sinica(高分子学报), 2011, (1): 12-23. doi:10.3724/SP.J.1105.2011.10247http://dx.doi.org/10.3724/SP.J.1105.2011.10247
Tao Yu(陶瑜), Gu Kai(顾恺), Shao Zhengzhong(邵正中). Acta Polymerica Sinica(高分子学报), 2021, 52(2): 158-165. doi:10.11777/j.issn1000-3304.2020.20151http://dx.doi.org/10.11777/j.issn1000-3304.2020.20151
Wang H, Du Y M, Li Y T, Zhu B W, Leow W R, Li Y G, Pan J S, Wu T, Chen X D. Adv Funct Mater, 2015, 25(25): 3825-3831. doi:10.1002/adfm.201501389http://dx.doi.org/10.1002/adfm.201501389
Wang C H, Hsieh C Y, Hwang J C. Adv Mater, 2011, 23(14): 1630-1634. doi:10.1002/adma.201004071http://dx.doi.org/10.1002/adma.201004071
Hang Y J, Ma J, Li S Y, Zhang X Y, Liu B, Ding Z Z, Lu Q, Chen H, Kaplan D L. ACS Biomater Sci Eng, 2019, 5(6): 2762-2768. doi:10.1021/acsbiomaterials.9b00369http://dx.doi.org/10.1021/acsbiomaterials.9b00369
Lu Q, Bai S M, Ding Z Z, Guo H, Shao Z Z, Zhu H S, Kaplan D L. Adv Mater Interfaces, 2016, 3(8): 1500687. doi:10.1002/admi.201500687http://dx.doi.org/10.1002/admi.201500687
Dong X D, Zhao Q, Xiao L Y, Lu Q, Kaplan D L. Biomacromolecules, 2016, 17(9): 3000-3006. doi:10.1021/acs.biomac.6b00863http://dx.doi.org/10.1021/acs.biomac.6b00863
Tsukada M, Gotoh Y, Nagura M, Minoura N, Kasai N, Freddi G. J Polym Sci, Part B: Polym Phys, 1994, 32(5): 961-968. doi:10.1002/polb.1994.090320519http://dx.doi.org/10.1002/polb.1994.090320519
Hu X, Lu Q, Sun L, Cebe P, Wang X Q, Zhang X H, Kaplan D L. Biomacromolecules, 2010, 11(11): 3178-3188. doi:10.1021/bm1010504http://dx.doi.org/10.1021/bm1010504
Zhou Wen(周文), Chen Xin(陈新), Shao Zhengzhong(邵正中). Progress in Chemistry(化学进展), 2006, 18(11): 1514-1522. doi:10.3321/j.issn:1005-281X.2006.11.014http://dx.doi.org/10.3321/j.issn:1005-281X.2006.11.014
Hu X, Kaplan D L, Cebe P, Macromolecules, 2006, 39(18): 6161-6170. doi:10.1021/ma0610109http://dx.doi.org/10.1021/ma0610109
Jiang J Y, Zhang X, Dan Z K, Ma J, Lin Y H, Li M, Nan C W, Shen Y. ACS Appl Mater Interfaces, 2017, 9(35): 29717-29731. doi:10.1021/acsami.7b07963http://dx.doi.org/10.1021/acsami.7b07963
Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X. Adv Mater, 2017, 29(20): 1601727. doi:10.1002/adma.201601727http://dx.doi.org/10.1002/adma.201601727
Lao J P, Xie H A, Shi Z Q, Li G, Li B, Hu G H, Yang Q L, Xiong C X. ACS Sustain Chem Eng, 2018, 6(5): 7151-7158. doi:10.1021/acssuschemeng.8b01219http://dx.doi.org/10.1021/acssuschemeng.8b01219
Chen H, Li X Q, Yu W C, Wang J Y, Shi Z Q, Xiong C X, Yang Q L. Biomacromolecules, 2020, 21(7): 2929-2937. doi:10.1021/acs.biomac.0c00732http://dx.doi.org/10.1021/acs.biomac.0c00732
Rabuffi M, Picci G. IEEE T Plasma Sci, 2002, 30(5): 1939-1942. doi:10.1109/tps.2002.805318http://dx.doi.org/10.1109/tps.2002.805318
0
浏览量
49
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构