浏览全部资源
扫码关注微信
化学工程联合国家重点实验室 浙江大学化学工程与生物工程学院 杭州 310027
E-mail:wangjd@zju.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-08-17,
收稿日期:2021-02-08,
修回日期:2021-03-01,
扫 描 看 全 文
胡晓波,孙婧元,蒋斌波等.持液颗粒聚合:一种新型环境下的乙烯/α-烯烃反应[J].高分子学报,2021,52(09):1138-1147.
Hu Xiao-bo,Sun Jing-yuan,Jiang Bin-bo,et al.Liquid Containing Particle Polymerization: Ethylene/α-Olefin Reaction in a New Environment[J].ACTA POLYMERICA SINICA,2021,52(09):1138-1147.
胡晓波,孙婧元,蒋斌波等.持液颗粒聚合:一种新型环境下的乙烯/α-烯烃反应[J].高分子学报,2021,52(09):1138-1147. DOI: 10.11777/j.issn1000-3304.2021.21046.
Hu Xiao-bo,Sun Jing-yuan,Jiang Bin-bo,et al.Liquid Containing Particle Polymerization: Ethylene/α-Olefin Reaction in a New Environment[J].ACTA POLYMERICA SINICA,2021,52(09):1138-1147. DOI: 10.11777/j.issn1000-3304.2021.21046.
通过改变乙烯/1-己烯共聚合反应中冷凝剂正己烷的含量,建立了纯气相、贫己烷和富己烷3种聚合环境,结合共单体效应和共溶效应的作用机制,分析了3种聚合环境下的聚合反应. 结果表明,在纯气相环境下,由于干颗粒内部的毛细冷凝现象,共单体效应占据主导,聚合反应活性下降. 在贫己烷环境下,初期由于湿颗粒内高浓度的1-己烯/乙烯比,聚合反应活性在共单体效应和共溶效应竞争作用下基本保持不变,后期随着正己烷含量的增加,共溶效应占据主导,聚合反应活性上升,在持液颗粒聚合模式下,气相和液相环境的初始1-己烯/乙烯摩尔比均是最佳,聚合反应活性最大. 在富己烷环境下,聚合反应活性由于1-己烯浓度被正己烷溶剂稀释而略有下降. 聚乙烯产品支化度在纯气相环境和贫己烷环境中相当,略高于富己烷环境的聚乙烯支化度.
With the change of the condensing agent (
n
-hexane) content in the process of ethylene/1-hexene copolymerization
three polymerization environments of pure gas phase environment
poor
n
-hexane environment and rich
n
-hexane environment were established. The "comonomer effect" and the "cosolubility effect" collectively affect the copolymerization reaction. The results show that the polymerization activity decreases in the pure gas phase environment
due to the capillary condensation inside the dry particles
and the comonomer effect dominates. In the poor
n
-hexane environment
because of the high molar concentration ratio of 1-hexene/ethylene in the wet particles at the initial stage
the polymerization activity remains basically unchanged under the competition of the comonomer effect and the cosolubility effect. With the increase of
n
-hexane content
co-solubility effect dominates
and the polymerization activity rises. The liquid-containing particle polymerization mode that the molar concentration ratio of 1-hexene/ethylene in the gas phase and slurry environment is the best maximizes the polymerization activity. In the rich
n
-hexane environment
the polymerization activity decreased slightly due to the dilution of 1-hexene concentration by
n
-hexane. The short chain branch degree of polyethylene products is almost the same in the pure gas phase environment and the poor
n
-hexane environment
slightly higher than that in the rich
n
-hexane environment.
乙烯聚合共溶效应共单体效应持液颗粒聚合
Ethylene polymerizationCosolubility effectComonomer effectLiquid-containing particle polymerization
Kalay G, Sousa R A, Reis R L, Cunha A M, Bevis M J. J Appl Polym Sci, 1999, 73(12): 2473-2483. doi:10.1002/(sici)1097-4628(19990919)73:12<2473::aid-app16>3.0.co;2-ohttp://dx.doi.org/10.1002/(sici)1097-4628(19990919)73:12<2473::aid-app16>3.0.co;2-o
Alizadeh A, McKenna T F. Macromol React Eng, 2014, 8: 419-433. doi:10.1002/mren.201300165http://dx.doi.org/10.1002/mren.201300165
Namkajorn M, Alizadeh A, Somsook E, McKenna T F. Macromol Chem Phys, 2014, 215(9): 873-878. doi:10.1002/macp.201300757http://dx.doi.org/10.1002/macp.201300757
Alizadeh A, Namkajorn M, Somsook E, McKenna T F. Macromol Chem Phys, 2015, 216(9): 985-995. doi:10.1002/macp.201500023http://dx.doi.org/10.1002/macp.201500023
McKenna T F L. Macromol React Eng, 2019, 13(2): 1800026. doi:10.1002/mren.201800026http://dx.doi.org/10.1002/mren.201800026
Chien J C W, Nozaki T. J Polym Sci Polym Chem, 1993, 31(1): 227-237. doi:10.1002/pola.1993.080310127http://dx.doi.org/10.1002/pola.1993.080310127
Heiland K, Kaminsky W. Die Makromolekulare Chemie: Macromol Chem Phys, 1992, 193(3): 601-610. doi:10.1002/macp.1992.021930305http://dx.doi.org/10.1002/macp.1992.021930305
Köppl A, Babel A I, Alt H G. J Mol Catal A-Chem, 2000, 153(1-2): 109-119. doi:10.1016/s1381-1169(99)00310-6http://dx.doi.org/10.1016/s1381-1169(99)00310-6
Galland G B, Seferin M, Mauler R S, Dos Santos J H Z. Polym Int, 1999, 48(8): 660-664. doi:10.1002/(sici)1097-0126(199908)48:8<660::aid-pi212>3.0.co;2-lhttp://dx.doi.org/10.1002/(sici)1097-0126(199908)48:8<660::aid-pi212>3.0.co;2-l
Walter P, Trinkle S, Suhm J, Mäder D, Friedrich C, Mülhaupt R. Macromol Chem Phys, 2000, 201(5): 604-612. doi:10.1002/(sici)1521-3935(20000301)201:5<604::aid-macp604>3.0.co;2-ihttp://dx.doi.org/10.1002/(sici)1521-3935(20000301)201:5<604::aid-macp604>3.0.co;2-i
Namkajorn M, Alizadeh A, Romano D, Rastogi S, McKenna T F. Macromol Chem Phys, 2016, 217(13): 1521-1528. doi:10.1002/macp.201600107http://dx.doi.org/10.1002/macp.201600107
Bergstra M F, Weickert G. Macromol Mater Eng, 2005, 290(6): 610-620. doi:10.1002/mame.200500085http://dx.doi.org/10.1002/mame.200500085
Andrade F N, McKenna T F L. Macromol Chem Phys, 2017, 218(20): 1700248. doi:10.1002/macp.201700248http://dx.doi.org/10.1002/macp.201700248
Chao K C, Seader J D. Aiche J, 1961, 7(4):598-605. doi:10.1002/aic.690070414http://dx.doi.org/10.1002/aic.690070414
Khare N P, Seavey K C, Liu Y A, Ramanathan S, Lingard S, Chen C C. Ind Eng Chem Res, 2002, 41(23): 5601-5618. doi:10.1021/ie020451nhttp://dx.doi.org/10.1021/ie020451n
Wu L, Zhou J M, Lynch D T, Wanke S E. Appl Catal A-gen, 2005, 293: 180-191. doi:10.1016/j.apcata.2005.07.030http://dx.doi.org/10.1016/j.apcata.2005.07.030
Awudza J A M, Tait P J T. J Polym Sci, Part A: Polym Chem, 2008, 46(1): 267-277. doi:10.1002/pola.22378http://dx.doi.org/10.1002/pola.22378
Białek M, Czaja K. Polymer, 2000, 41(22): 7899-7904. doi:10.1016/s0032-3861(00)00153-1http://dx.doi.org/10.1016/s0032-3861(00)00153-1
Horikawa T, CsabaDo D, Nicholson D. Adv Colloid Interface Polym, 2011, 169(1): 40-58. doi:10.1016/j.cis.2011.08.003http://dx.doi.org/10.1016/j.cis.2011.08.003
Zhou Z M, Cheng Z M, Li Z, Yuan W K. Chem Eng Sci, 2004, 59(20): 4305-4311. doi:10.1016/j.ces.2004.06.023http://dx.doi.org/10.1016/j.ces.2004.06.023
Chen Meijuan(陈美娟). Investigation of the Sorption and Diffusion in Polyethylene by Gravimetric and NMR Methods and Its Application(基于重量法和核磁共振法的聚乙烯中溶解扩散行为研究及其应用). Doctoral Dissertation of Zhejiang University(浙江大学博士学位论文), 2014. doi:10.14257/astl.2014.45.22http://dx.doi.org/10.14257/astl.2014.45.22
Wu W Q, Yang Y R, Luo G H, Wang J D, Jiang B B, Wang S F, Han G D. US patent 9174183B2. 2015-11-03
Hu Xiaobo(胡晓波), Yang Yao(杨遥), Jiang Binbo(蒋斌波), Wang Jingdai(王靖岱), Yang Yongrong(阳永荣). Acta Polymerica Sinica(高分子学报), 2021, 52(2): 186-195. doi:10.11777/j.issn1000-3304.2021.21046http://dx.doi.org/10.11777/j.issn1000-3304.2021.21046
Seger M R, Maciel G E. Anal Chem, 2004, 76: 5734-5747. doi:10.1021/ac040104ihttp://dx.doi.org/10.1021/ac040104i
0
浏览量
33
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构