浏览全部资源
扫码关注微信
1.生命有机磷化学及化学生物学教育部重点实验室 清华大学化学系 北京 100084
2.中国石油大学(华东)化学工程学院 青岛 258000
3.中国科学院化学研究所 北京 100190
E-mail: yawsun@upc.edu.cn; liudongsheng@tsinghua.edu.cn
纸质出版日期:2021-08-20,
网络出版日期:2021-06-29,
收稿日期:2021-02-19,
修回日期:2021-03-13,
扫 描 看 全 文
杨勃,孙立梅,潘玙璠等.基于光敏性胸腺嘧啶脱氧核苷亚膦酰胺单体的光响应DNA水凝胶[J].高分子学报,2021,52(08):996-1005.
Yang Bo,Sun Li-mei,Pan Yu-fan,et al.Photo-responsive DNA Hydrogel Based on Photoactive Thymine Phosphoramidite Monomer[J].ACTA POLYMERICA SINICA,2021,52(08):996-1005.
杨勃,孙立梅,潘玙璠等.基于光敏性胸腺嘧啶脱氧核苷亚膦酰胺单体的光响应DNA水凝胶[J].高分子学报,2021,52(08):996-1005. DOI: 10.11777/j.issn1000-3304.2021.21053.
Yang Bo,Sun Li-mei,Pan Yu-fan,et al.Photo-responsive DNA Hydrogel Based on Photoactive Thymine Phosphoramidite Monomer[J].ACTA POLYMERICA SINICA,2021,52(08):996-1005. DOI: 10.11777/j.issn1000-3304.2021.21053.
设计并合成了一种1-(4
5-二甲氧基-2-硝基苄基)乙氧基光敏基团保护的胸腺嘧啶脱氧核苷亚膦酰胺单体,将其通过固相合成引入到DNA序列中,可以实现对DNA链互补配对的光学调控;并进一步利用该单体合成了功能性的核酸序列,成功制备了快速光响应的DNA超分子水凝胶. 该结果拓展了DNA单体的多样性,为构建新型光响应功能体系提供了新途径.
Deoxyribonucleic acid (DNA) is a natural polyester polymer with programmable sequences and precise molecular recognition. Therefore
DNA has been widely investigated in functional devices and materials recently. Taking advantage of the structural diversity of DNA
novel functional devices and materials have been endowed with a variety of physical
chemical and biological responsiveness
among which
optical regulation has attracted much attention due to its non-contact and precise temporal-spatial controllability. To bring optical responsiveness to DNA material
it is necessary to introduce rational designed unnatural bases into DNA
which has been a challenging frontier. In this work
a novel thymine phosphoramidite monomer protected by 1-(4
5-dimethoxy-2-nitrobenzyl) ethoxy group (DMONB) has been designed and synthesized. The monomer was synthesized through 6 step reactions to shield the hydrogen bond site of thymine
and the product can be achieved in gram scale with high purity. Then the monomer was applied to synthesize photo-responsive DNA with random sequence through commercial solid phase synthesis procedure
which was purified and detected by RP-HPLC with good stability. The coupling efficiency of the photo-responsive monomer is comparable to the commercially available phosphoramidite monomers
detected by monitoring the 4
4'-dimethoxytriphenylmethyl (DMT) groups. The DMONB group could effectively hinder the DNA hybridization
which was demonstrated by the 10% native polyacrylamide gel electrophoresis. Under UV light for 30 s
the DMONB group could be totally removed and result in the recover of the DNA hybridization
which illustrates that this approach is of high efficiency and fast-responsive. Taking advantage of this controllable hybridization strategy
a fast light-responsive pure DNA supramolecular hydrogel has been designed and prepared
which could realize photo-chemically control the formation of pure DNA supramolecular hydrogel. This photo-induced DNA hydrogel exhibits 730 Pa storage modulus and 100 Pa loss modulus
with reversible thermal responsiveness and shear-thining property
which is similar to previously reported DNA hydrogel by our group. Our research expands the diversity of artificial DNA monomers and provides an alternative way to construct light-responsive functional DNA based materials system.
碱基光保护光响应DNA自组装DNA超分子水凝胶
Nucleobase-cagingPhoto-responsivenessDNA self-assemblyDNA supramolecular hydrogel
Hoffman A S. Adv Drug Deliv Rev, 2013, 65(1): 10-16. doi:10.1016/j.addr.2012.11.004http://dx.doi.org/10.1016/j.addr.2012.11.004
Sun H, Kabb C P, Sims M B, Sumerlin B S. Prog Polym Sci, 2019, 89: 61-75. doi:10.1016/j.progpolymsci.2018.09.006http://dx.doi.org/10.1016/j.progpolymsci.2018.09.006
Le X X, Lu W, Zhang J W, Chen T. Adv Sci, 2019, 6(5): 1801584. doi:10.1002/advs.201801584http://dx.doi.org/10.1002/advs.201801584
Li Y J, Zhu C Y, Dong Y C, Liu D S. Polymer, 2020, 210: 122993. doi:10.1016/j.polymer.2020.122993http://dx.doi.org/10.1016/j.polymer.2020.122993
Shao Y, Jia H Y, Cao T Y, Liu D S. Acc Chem Res, 2017, 50(4): 659-668. doi:10.1021/acs.accounts.6b00524http://dx.doi.org/10.1021/acs.accounts.6b00524
Shi J Z, Shi Z W, Dong Y C, Wu F, Liu D S. ACS Appl Bio Mater, 2020, 3(5): 2827-2837. doi:10.1021/acsabm.0c00081http://dx.doi.org/10.1021/acsabm.0c00081
Kahn J S, Hu Y, Willner I. Acc Chem Res, 2017, 50(4): 680-690. doi:10.1021/acs.accounts.6b00542http://dx.doi.org/10.1021/acs.accounts.6b00542
Wang D, Hu Y, Liu P F, Luo D. Acc Chem Res, 2017, 50(4): 733-739. doi:10.1021/acs.accounts.6b00581http://dx.doi.org/10.1021/acs.accounts.6b00581
Shi J, Jia H, Chen H, Wang X, Xu J F, Ren W, Zhao J, Zhou X, Dong Y, Liu D. CCS Chem, 2019, 1(3): 296-303
Jia H, Shi, J, Ren W, Zhao J, Dong Y, Liu D. Polymer, 2019, 171: 121-126. doi:10.1016/j.polymer.2019.03.025http://dx.doi.org/10.1016/j.polymer.2019.03.025
Dong Y C, Yang Z Q, Liu D S. Acc Chem Res, 2014, 47(6): 1853-1860. doi:10.1021/ar500073ahttp://dx.doi.org/10.1021/ar500073a
Shao Yu(邵昱), Li Chuang(李闯), Zhou Xu(周旭), Chen Ping(陈平), Yang Zhongqiang(杨忠强), Li Zhibo(李志波), Liu Dongsheng(刘冬生). Acta Chimica Sinica(化学学报), 2015, (73): 815-818
Li L L, Xing H, Zhang J J, Lu Y. Acc Chem Res, 2019, 52(9): 2415-2426. doi:10.1021/acs.accounts.9b00167http://dx.doi.org/10.1021/acs.accounts.9b00167
Liu J W, Cao Z H, Lu Y. Chem Rev, 2009, 109(5): 1948-1998. doi:10.1021/cr030183ihttp://dx.doi.org/10.1021/cr030183i
Kelley E G, Albert J N, Sullivan M O, Epps T H, Ⅲ. Chem Soc Rev, 2013, 42(17): 7057-7071. doi:10.1039/c3cs35512hhttp://dx.doi.org/10.1039/c3cs35512h
Ma X Z, Yang Z Q, Wang Y J, Zhang G L, Shao Y, Jia H Y, Cao T Y, Wang R, Liu D S. ACS Appl Mater Interfaces, 2017, 9(3): 1995-2000. doi:10.1021/acsami.6b12327http://dx.doi.org/10.1021/acsami.6b12327
Brown T E, Anseth K S. Chem Soc Rev, 2017, 46(21): 6532-6552. doi:10.1039/c7cs00445ahttp://dx.doi.org/10.1039/c7cs00445a
Tam R Y, Smith L J, Shoichet M S. Acc Chem Res, 2017, 50(4): 703-713. doi:10.1021/acs.accounts.6b00543http://dx.doi.org/10.1021/acs.accounts.6b00543
Asanuma H, Ito T, Yoshida T, Liang X, Komiyama M. Angew Chem Int Ed, 1999, 38(16): 2393-2395. doi:10.1002/(sici)1521-3773(19990816)38:16<2393::aid-anie2393>3.0.co;2-7http://dx.doi.org/10.1002/(sici)1521-3773(19990816)38:16<2393::aid-anie2393>3.0.co;2-7
Kang H Z, Liu H P, Zhang X L, Yan J L, Zhu Z, Peng L, Yang H H, Kim Y M, Tan W H. Langmuir, 2011, 27(1): 399-408. doi:10.1021/la1037553http://dx.doi.org/10.1021/la1037553
Peng L, You M X, Yuan Q, Wu C C, Han D, Chen Y, Zhong Z H, Xue J G, Tan W H. J Am Chem Soc, 2012, 134(29): 12302-12307. doi:10.1021/ja305109nhttp://dx.doi.org/10.1021/ja305109n
Tang X J, Zhang J H, Sun J J, Wang Y, Wu J Z, Zhang L H. Org Biomol Chem, 2013, 11(45): 7814-7824. doi:10.1039/c3ob41735bhttp://dx.doi.org/10.1039/c3ob41735b
Ankenbruck N, Courtney T, Naro Y, Deiters A. Angew Chem Int Ed, 2018, 57(11): 2768-2798. doi:10.1002/anie.201700171http://dx.doi.org/10.1002/anie.201700171
Liu Q Y, Deiters A. Acc Chem Res, 2014, 47(1): 45-55. doi:10.1021/ar400036ahttp://dx.doi.org/10.1021/ar400036a
Govan J M, Uprety R, Hemphill J, Lively M O, Deiters A. ACS Chem Biol, 2012, 7(7): 1247-1256. doi:10.1021/cb300161rhttp://dx.doi.org/10.1021/cb300161r
Young D D, Lusic H, Lively M O, Yoder J A, Deiters A. Chembiochem, 2008, 9(18): 2937-2940. doi:10.1002/cbic.200800627http://dx.doi.org/10.1002/cbic.200800627
Lusic H, Lively M O, Deiters A. Mol Biosyst, 2008, 4(6): 508-511. doi:10.1039/b800166ahttp://dx.doi.org/10.1039/b800166a
Karginov A V, Zou Y, Shirvanyants D, Kota P, Dokholyan N V, Young D D, Hahn K M, Deiters A. J Am Chem Soc, 2011, 133(3): 420-423. doi:10.1021/ja109630vhttp://dx.doi.org/10.1021/ja109630v
Ji Y Z, Yang J L, Wu L, Yu L J, Tang X J. Angew Chem Int Ed, 2016, 55(6): 2152-2156. doi:10.1002/anie.201510921http://dx.doi.org/10.1002/anie.201510921
Yamazoe S, Liu Q Y, McQuade L E, Deiters A, Chen J K. Angew Chem Int Ed, 2014, 53(38): 10114-10118. doi:10.1002/anie.201405355http://dx.doi.org/10.1002/anie.201405355
Hemphill J, Borchardt E K, Brown K, Asokan A, Deiters A. J Am Chem Soc, 2015, 137(17): 5642-5645. doi:10.1021/ja512664vhttp://dx.doi.org/10.1021/ja512664v
Klán P, Šolomek T, Bochet C G, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Chem Rev, 2013, 113(1): 119-191. doi:10.1021/cr300177khttp://dx.doi.org/10.1021/cr300177k
Lusic H, Young D D, Lively M O, Deiters A. Org Lett, 2007, 9(10): 1903-1906. doi:10.1021/ol070455uhttp://dx.doi.org/10.1021/ol070455u
Kröck L, Heckel A. Angew Chem Int Ed, 2005, 44: 471-473. doi:10.1002/anie.200461779http://dx.doi.org/10.1002/anie.200461779
Rodrigues-Correia A, Seyfried P, Heckel A. Curr Protoc Nucleic Acid Chem, 2014, 57: 6.11.1-6.11.32. doi:10.1002/0471142700.nc0611s57http://dx.doi.org/10.1002/0471142700.nc0611s57
Xing Y Z, Cheng E J, Yang Y Y, Chen P, Zhang T, Sun Y W, Yang Z Q, Liu D S. Adv Mater, 2011, 23(9): 1117-1121. doi:10.1002/adma.201003343http://dx.doi.org/10.1002/adma.201003343
Jin J, Xing Y Z, Xi Y L, Liu X L, Zhou T, Ma X X, Yang Z Q, Wang S T, Liu D S. Adv Mater, 2013, 25(34): 4714-4717. doi:10.1002/adma.201301175http://dx.doi.org/10.1002/adma.201301175
0
浏览量
79
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构