浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学学院 长春 130012
E-mail: hongyuzhang@jlu.edu.cn
纸质出版日期:2021-08-20,
网络出版日期:2021-06-25,
收稿日期:2021-03-11,
修回日期:2021-05-06,
扫 描 看 全 文
唐保磊,于旭,张红雨.基于单苯环分子的多晶相发光超分子弹性晶体[J].高分子学报,2021,52(08):1015-1023.
Tang Bao-lei,Yu Xu,Zhang Hong-yu.Supramolecular Polymorphic Crystals with Luminescence and Elasticity Based on a Single Benzene Framework[J].ACTA POLYMERICA SINICA,2021,52(08):1015-1023.
唐保磊,于旭,张红雨.基于单苯环分子的多晶相发光超分子弹性晶体[J].高分子学报,2021,52(08):1015-1023. DOI: 10.11777/j.issn1000-3304.2021.21076.
Tang Bao-lei,Yu Xu,Zhang Hong-yu.Supramolecular Polymorphic Crystals with Luminescence and Elasticity Based on a Single Benzene Framework[J].ACTA POLYMERICA SINICA,2021,52(08):1015-1023. DOI: 10.11777/j.issn1000-3304.2021.21076.
提出了一种利用超分子相互作用实现多晶型及晶体机械柔性制备的策略,通过对5-氨基间苯二甲酸二甲酯的结晶条件进行微调,得到了2种具有弹性的单苯环发光有机超分子晶体
1B
和
1G
. 引人注目的是2种晶型的晶体均能在直形及弹性弯曲状态下有效地传导光信号,证明了它们在柔性光学器件中的实用性. 本研究不仅对设计有机超分子晶体的多晶型和机械柔性具有重要的科学意义,而且对柔性晶体在光学领域的应用也具有重要的指导意义.
In order to study the relationship between structure and property of organic supramolecular crystals
polymorph is an ideal research model because a single molecule can have various packing mode and supramolecular interaction motifs. Notwithstanding
the polymorph of organic supramolecular crystals with different mechanical properties still remain rare
which limit the exploration of mechanism of mechanical properties. In this report
we raised a strategy to obtain polymorphism with different mechanical flexibilities by controlling the concentration and solvent of dimethyl 5-aminoisophthalate
which could further modify the supramolecular weak interaction. The
1B
with blue emission and
1G
with green emission were obtained. For
1B
crystal
it does not have
π
-
π
packing; for
1G
it was H-aggregation that induced red-shift of fluorescence. Both of the crystals could be elastic bendable with low elastic modulus
that is
1.5 GPa for
1B
and 2.1 GPa for
1G
. It is interrelated to the weak supramolecular interaction between layer to layer:
1G
has C―H…
π
and H―C…O and
1B
has C―H…
π
. The above supramolecular interactions prevent the crystal from relative slippage. Based on those properties
those materials have potential application as optical waveguide and polarizer. For optical waveguide
both
1B
and
1G
could possess optical waveguiding property in straight and bend state
where the optical loss coefficient of
1B
was 0.374 dB/mm in straight state and 0.388 dB/mm in bend state and that of
1G
was 0.233 dB/mm in straight state and 0.242 dB/mm in bend state. Furthermore
the material could also be a polarizer. It is of great importance that crystals of two polymorphs can conduct optical signal efficiently in both straight and bent states which shows their application in flexible optical device. The research is not only of important scientific meaning for the design of polymorphism and mechanical flexibility in organic supramolecular crystals
but also of important instructive significance in optical application of flexible crystals.
超分子作用力多晶型机械柔性弹性模量光波导
Supramolecular interactionPolymorphsMechanical flexibilityElastic modulusOptical waveguide
Shen Jiacong(沈家骢), Zhang Wenke(张文科), Sun Junqi(孙俊奇). Introduction of Supramolecular Materials(超分子材料引论). Beijing(北京): Science(科学出版社), 2019. 31-110
Liu H, Andob N, Yamaguchib S, Naumovd P, Zhang H. Chin Chem Lett, 2021, 32: 1669-1674. doi:10.1016/j.cclet.2020.12.013http://dx.doi.org/10.1016/j.cclet.2020.12.013
Liu Y, Man X, Bai Q, Liu H, Liu P, Fu Y, Hu D, Lu P, Ma Y. CCS Chem, 2021, 3: 545-558
Wu S Q, Zhou B, Yan D P. Adv Opt Mater, 2021, DOI:10.1002/adom.202001768http://dx.doi.org/10.1002/adom.202001768
Yao L, Zhang S, Wang R, Li W, Shen F, Yang B, Ma Y. Angew Chem Int Ed, 2014, 53: 2119-2123. doi:10.1002/anie.201308486http://dx.doi.org/10.1002/anie.201308486
Tang B, Wang C, Wang Y, Zhang H. Angew Chem Int Ed, 2017, 56: 12543-12547. doi:10.1002/anie.201706517http://dx.doi.org/10.1002/anie.201706517
Wang C, Dong H, Jiang L, Hu W. Chem Soc Rev, 2018, 47: 422-500. doi:10.1039/c7cs00490ghttp://dx.doi.org/10.1039/c7cs00490g
Thekkeppat N P, Lakshmipathi M, Jalilov A S, Das P, Peedikakkal A M P, Ghosh S. Cryst Growth Des, 2020, 20: 3937-3943. doi:10.1021/acs.cgd.0c00250http://dx.doi.org/10.1021/acs.cgd.0c00250
Wang Y Z, Tang S X, Wen Y T, Zheng S Y, Yang B, Yuan W Z. Mater Horiz, 2020, 7: 2105-2112. doi:10.1039/d0mh00688bhttp://dx.doi.org/10.1039/d0mh00688b
Luo X, Li J, Li C, Heng L, Dong Y Q, Liu Z, Bo Z, Tang B Z. Adv Mater, 2011, 23: 3261-3265. doi:10.1002/adma.201101059http://dx.doi.org/10.1002/adma.201101059
Xiao C, Zhao W Y, Zhou D Y, Huang Y, Tao Y, Wu W H, Yang C. Chin Chem Lett, 2015, 26: 817-824. doi:10.1016/j.cclet.2015.05.013http://dx.doi.org/10.1016/j.cclet.2015.05.013
Ma Z, Teng M, Wang Z, Yang S, Jia X. Angew Chem Int Ed, 2013, 52: 12268-12272. doi:10.1002/anie.201306503http://dx.doi.org/10.1002/anie.201306503
Cheng X, Wang Z Y, Tang B L, Zhang H Y, Qin A J, Sun J Z, Tang B Z. Adv Funct Mater, 2018, 28: 1706506. doi:10.1002/adfm.201706506http://dx.doi.org/10.1002/adfm.201706506
Hayashi S, Ishiwari F, Fukushima T, Mikage S, Imamura Y, Tashiro M, Katouda M. Angew Chem Int Ed, 2020, 59: 16195-16201. doi:10.1002/anie.202006474http://dx.doi.org/10.1002/anie.202006474
Zhao J, Zhao J, He X, Tan Z, Cheng X, Han Q, Zhou C. J Mater Chem C, 2021, 9: 1000-1007. doi:10.1039/d0tc04679ehttp://dx.doi.org/10.1039/d0tc04679e
Yuan C, Saito S, Camacho C, Irle S, Hisaki I, Yamaguchi S. J Am Chem Soc, 2013, 135: 8842-8845. doi:10.1021/ja404198hhttp://dx.doi.org/10.1021/ja404198h
Wang K, Zhang H, Chen S, Yang G, Zhang J, Tian W, Su Z, Wang Y. Adv Mater, 2014, 26: 6168-6173. doi:10.1002/adma.201401114http://dx.doi.org/10.1002/adma.201401114
Liu H, Lu Z, Ye K, Zhang Z, Zhang H. ACS Appl Mater Interfaces, 2019, 11: 34526-34531. doi:10.1021/acsami.9b14474http://dx.doi.org/10.1021/acsami.9b14474
Fang B, Chu M M, Wu Z, Shi Y, Zhao Y S, Yin M Z. J Mater Chem C, 2019, 7: 4434-4440. doi:10.1039/c9tc00156ehttp://dx.doi.org/10.1039/c9tc00156e
Zhang Y W, Ma H L, Wang S P, Li Z Q, Ye K Q, Zhang J Y, Liu Y, Peng Q, Wang Y. J Phys Chem C, 2016, 120: 19759-19767. doi:10.1021/acs.jpcc.6b05537http://dx.doi.org/10.1021/acs.jpcc.6b05537
Lu Z, Zhang Y, Liu H, Ye K, Liu W, Zhang H. Angew Chem Int Ed, 2020, 59: 4299-4303. doi:10.1002/anie.201914026http://dx.doi.org/10.1002/anie.201914026
Liu H, Bian Z, Cheng Q, Lan L, Wang Y, Zhang H. Chem Sci, 2019, 10: 227-232. doi:10.1039/c8sc03135ehttp://dx.doi.org/10.1039/c8sc03135e
Gierschner J, Varghese S, Park S Y. Adv Opt Mater, 2016, 4: 348-364. doi:10.1002/adom.201500531http://dx.doi.org/10.1002/adom.201500531
Fang H H, Ding R, Lu S Y, Yang J, Zhang X L, Yang R, Feng J, Chen Q D, Song J F, Sun H B. Adv Funct Mater, 2012, 22: 33-38. doi:10.1002/adfm.201290002http://dx.doi.org/10.1002/adfm.201290002
Wu J J, Wang X D, Liao L S. ACS Photonics, 2019, 6: 2590-2599. doi:10.1021/acsphotonics.9b01187http://dx.doi.org/10.1021/acsphotonics.9b01187
Sun M J, Liu Y, Yan Y, Li R, Shi Q, Zhao Y S, Zhong Y W, Yao J. J Am Chem Soc, 2018, 140: 4269-4278. doi:10.1021/jacs.7b12519http://dx.doi.org/10.1021/jacs.7b12519
Catalano L, Karothu D P, Schramm S, Ahmed E, Rezgui R, Barber T J, Famulari A, Naumov P. Angew Chem Int Ed, 2018, 57: 17254-17258. doi:10.1002/anie.201810514http://dx.doi.org/10.1002/anie.201810514
Halabi J M, Ahmed E, Catalano L, Karothu D P, Rezgui R, Naumov P. J Am Chem Soc, 2019, 141: 14966-14970. doi:10.1021/jacs.9b07645http://dx.doi.org/10.1021/jacs.9b07645
Wang H, Tang Q, Zhao X, Tong Y, Liu Y. ACS Appl Mater Interfaces, 2018, 10: 2785-2792. doi:10.1021/acsami.7b15352http://dx.doi.org/10.1021/acsami.7b15352
Ali A A, Kharbash R, Kim Y. Anal Chim Acta, 2020, 1110: 199-223. doi:10.1016/j.aca.2020.01.057http://dx.doi.org/10.1016/j.aca.2020.01.057
Huang R, Wang C, Wang Y, Zhang H. Adv Mater, 2018, 30: 1800814. doi:10.1002/adma.201800814http://dx.doi.org/10.1002/adma.201800814
Huang R, Tang B, Ye K, Wang C, Zhang H. Adv Opt Mater, 2019, 7: 1900927. doi:10.1002/adom.201900927http://dx.doi.org/10.1002/adom.201900927
Liu H, Lu Z, Zhang Z, Wang Y, Zhang H. Angew Chem Int Ed, 2018, 57: 8448-8452. doi:10.1002/anie.201802020http://dx.doi.org/10.1002/anie.201802020
Liu B, Lu Z, Tang B, Liu H, Liu H, Zhang Z, Ye K, Zhang H. Angew Chem Int Ed, 2020, 59: 23117-23121. doi:10.1002/anie.202011857http://dx.doi.org/10.1002/anie.202011857
Hayashi S, Yamamoto S Y, Takeuchi D, Ie Y, Takagi K. Angew Chem Int Ed, 2018, 57: 17002-17008. doi:10.1002/anie.201810422http://dx.doi.org/10.1002/anie.201810422
Hayashi S, Koizumi T. Chemistry, 2018, 24: 8507-8512. doi:10.1002/chem.201801965http://dx.doi.org/10.1002/chem.201801965
Annadhasan M, Karothu D P, Chinnasamy R, Catalano L, Ahmed E, Ghosh S, Naumov P, Chandrasekar R. Angew Chem Int Ed, 2020, 59: 13821-13830. doi:10.1002/anie.202002627http://dx.doi.org/10.1002/anie.202002627
Liu H, Ye K, Zhang Z, Zhang H. Angew Chem Int Ed, 2019, 58: 19081-19086. doi:10.1002/anie.201912236http://dx.doi.org/10.1002/anie.201912236
Yadava K, Qin X, Liu X, Vittal J J. Chem Commun, 2019, 55: 14749-14752. doi:10.1039/c9cc07774jhttp://dx.doi.org/10.1039/c9cc07774j
Liu B, Liu H, Zhang H, Di Q, Zhang H. J Phys Chem Lett, 2020, 11: 9178-9183. doi:10.1021/acs.jpclett.0c02623http://dx.doi.org/10.1021/acs.jpclett.0c02623
Liu B, Di Q, Liu W, Wang C, Wang Y, Zhang H. J Phys Chem Lett, 2019, 10: 1437-1442. doi:10.1021/acs.jpclett.9b00196http://dx.doi.org/10.1021/acs.jpclett.9b00196
Liu H, Lu Z, Tang B, Qu C, Zhang Z, Zhang H. Angew Chem Int Ed, 2020, 59: 12944-12950. doi:10.1002/anie.202002492http://dx.doi.org/10.1002/anie.202002492
Tang B L, Liu B, Liu H P, Zhang H Y. Adv Funct Mater, 2020, 30: 2004116. doi:10.1002/adfm.202004116http://dx.doi.org/10.1002/adfm.202004116
Cao J, Liu H, Zhang H. CCS Chem, 2020, 2: 2569-2575
Chu X, Lu Z, Tang B, Liu B, Ye K, Zhang H. J Phys Chem Lett, 2020, 11: 5433-5438. doi:10.1021/acs.jpclett.0c01545http://dx.doi.org/10.1021/acs.jpclett.0c01545
0
浏览量
112
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构