浏览全部资源
扫码关注微信
1.(天津大学 1化工学院,材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300350) (,天津 300072)
2.天津大学 1化工学院,天津化学化工协同创新中心,天津 300072
3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072
E-mail: kyzhang@tju.edu.cn
纸质出版日期:2021-10-20,
网络出版日期:2021-07-25,
收稿日期:2021-03-12,
修回日期:2021-03-27,
扫 描 看 全 文
王行,胡浩东,陈相见等.含功能化咪唑鎓离聚物增韧改性聚乳酸的研究[J].高分子学报,2021,52(10):1323-1333.
Wang Hang,Hu Hao-dong,Chen Xiang-jian,et al.Functionalized Imidazolium-based Ionomers as Effective Toughening Agents for Poly(lactic acid)[J].ACTA POLYMERICA SINICA,2021,52(10):1323-1333.
王行,胡浩东,陈相见等.含功能化咪唑鎓离聚物增韧改性聚乳酸的研究[J].高分子学报,2021,52(10):1323-1333. DOI: 10.11777/j.issn1000-3304.2021.21078.
Wang Hang,Hu Hao-dong,Chen Xiang-jian,et al.Functionalized Imidazolium-based Ionomers as Effective Toughening Agents for Poly(lactic acid)[J].ACTA POLYMERICA SINICA,2021,52(10):1323-1333. DOI: 10.11777/j.issn1000-3304.2021.21078.
以生物质来源的氯醚弹性体和羟乙基咪唑、PEG端咪唑单体为原料,通过简单的季胺化和离子交换反应,成功制备了2种新型功能化的生物基离聚物(ECO-OH-PF
6
,ECO-EG-PF
6
),并将其应用于聚乳酸的共混增韧改性. 离聚物ECO-EG-PF
6
呈现典型的弹性体特征,而ECO-OH-PF
6
表现为塑料性能. 在聚乳酸(PLA)与离聚物共混体系中,ECO-OH-PF
6
表现出对PLA更优的增韧效果. PLA/ECO-OH-PF
6
(80/20)共混物断裂伸长率可提高至241%,而拉伸强度可保持在47.8 MPa. 动态机械分析和扫描电子显微镜的结果表明离子-偶极相互作用和氢键相互作用使得ECO-OH-PF
6
与PLA组分之间具有良好的相容性,形成了较强的界面粘附. 而且由于折光指数相匹配,PLA/ECO-OH-PF
6
共混物表现出良好的透明性,可见光范围内的透过率可达77%~87%. 因而ECO-OH-PF
6
可成为PLA良好的增韧改性剂,促进PLA基材料在透明包装等领域获得广阔的应用.
Two kinds of novel functionalized bio-based ionomers (ECO-OH-PF
6
ECO-EG-PF
6
) were successfully synthesized through simple quaternization and ion exchange reactions from commercialized chloroether rubber and 1-(2-hydroxyethyl) imidazole
new designed PEG-based imidazole. The two ionomers were studied as toughening agents for poly(lactic acid) (PLA) by a melt blending method. Due to the different side chain structures
the two ionomers possess completely different physical properties
thus leading to totally different toughening effect for the PLA/ionomers binary blends. DSC and DMA results indicated that the ECO-EG-PF
6
mainly played a role of plasticizer for PLA
leading to enhancement in cold crystallization and flexibility of PLA. The PLA/ECO-EG-PF
6
(90/10) blend exhibited a high tensile strength of 63.1 MPa
an improved elongation at break up to 135% and impact strength of 4.8 kJ/m
2
. However
the transparency of the PLA/ECO-EG-PF
6
(90/10) blend was decreased because of the unmatching refractive index (RI) of the large PEG segment with PLA and the improved crystallinity. Compared with the ECO-EG-PF
6
the ECO-OH-PF
6
ionomer endowed PLA with better transparency and tensile ductility. Especially
the PLA/ECO-OH-PF
6
(80/20) binary blend achieved the optimal mechanical properties with the tensile strength of 47.8 MPa and high elongation at break (241%). The results of DMA and SEM suggest that ECO-OH-PF
6
and PLA had a good interfacial compatibility and adhesion
which is due to the ion-dipole interactions and hydrogen bonding formed between ECO-OH-PF
6
and the PLA matrix. Moreover
the PLA/ECO-OH-PF
6
(90/10) blend showed a high light transmittance of 77%‒87% in the visible light range
which is comparable to that of PLA.
聚乳酸离聚物非价键相互作用增韧透明性
Poly(lactic acid)IonomerNoncovalent interactionsTougheningTransparency
Geyer R, Jambeck J R, Law K L. Sci Adv, 2017, 3(7): e1700782. doi:10.1126/sciadv.1700782http://dx.doi.org/10.1126/sciadv.1700782
Rasal R M, Janorkar A V, Hirt D E. Prog Polym Sci, 2010, 35: 338-356. doi:10.1016/j.progpolymsci.2009.12.003http://dx.doi.org/10.1016/j.progpolymsci.2009.12.003
Farah S, Anderson D G, Langer R. Adv Drug Deliv Rev, 2016, 107: 367-392. doi:10.1016/j.addr.2016.06.012http://dx.doi.org/10.1016/j.addr.2016.06.012
Liu H, Zhang J. J Polym Sci, Part B: Polym Phys, 2011, 49: 1051-1083. doi:10.1002/polb.22283http://dx.doi.org/10.1002/polb.22283
Castro-Aguirre E, Iniguez-Franco F, Samsudin H, Fang X, Auras R. Adv Drug Deliv Rev, 2016, 107: 333-366. doi:10.1016/j.addr.2016.03.010http://dx.doi.org/10.1016/j.addr.2016.03.010
Chang Y, Chen Z, Yang Y. Ind Eng Chem Res, 2017, 57: 242-249. doi:10.1021/acs.iecr.7b04014http://dx.doi.org/10.1021/acs.iecr.7b04014
Enumo A, Gross I P, Saatkamp R H, Pires A T N, Parize A L. Polym Test, 2020, 88: 106552. doi:10.1016/j.polymertesting.2020.106552http://dx.doi.org/10.1016/j.polymertesting.2020.106552
Dhar P, M R K, Bhasney S M, Bhagabati P, Kumar A, Katiyar V. Ind Eng Chem Res, 2018, 57: 14493-14508. doi:10.1021/acs.iecr.8b02658http://dx.doi.org/10.1021/acs.iecr.8b02658
Liang Xiaolin(梁孝林), Wen Jie(闻杰), Yang Wendi(杨雯迪), Liu Wenyi(刘文毅), Shi Dongjian(施冬健), Chen Mingqing(陈明清). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 147-159
Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q. Polymer, 2013, 54: 5257-5266. doi:10.1016/j.polymer.2013.07.051http://dx.doi.org/10.1016/j.polymer.2013.07.051
He L, Song F, Li D F, Zhao X, Wang X L, Wang Y Z. ACS Sustain Chem Eng, 2020, 8: 1573-1582. doi:10.1021/acssuschemeng.9b06308http://dx.doi.org/10.1021/acssuschemeng.9b06308
Zhang K, Misra M, Mohanty A K. ACS Sustain Chem Eng, 2014, 2: 2345-2354. doi:10.1021/sc500353vhttp://dx.doi.org/10.1021/sc500353v
Zhang K, Nagarajan V, Misra M, Mohanty A K. ACS Appl Mater Interfaces, 2014, 6: 12436-12448. doi:10.1021/am502337uhttp://dx.doi.org/10.1021/am502337u
Lin W, Qu J P. Ind Eng Chem Res, 2019, 58: 10894-10907. doi:10.1021/acs.iecr.9b01644http://dx.doi.org/10.1021/acs.iecr.9b01644
Kim P, Li C, Riman R E, Watkins J. ACS Appl Mater Interfaces, 2018, 10: 9038-9047. doi:10.1021/acsami.8b00120http://dx.doi.org/10.1021/acsami.8b00120
Loste J, Lopez-Cuesta J M, Billon L, Garay H, Save M. Prog Polym Sci, 2019, 89: 133-158. doi:10.1016/j.progpolymsci.2018.10.003http://dx.doi.org/10.1016/j.progpolymsci.2018.10.003
Prasad S, Zhu H, Kurian A, Badge I, Dhinojwala A. Langmuir, 2013, 29: 15727-15731. doi:10.1021/la403418hhttp://dx.doi.org/10.1021/la403418h
Lin Y, Zhang K Y, Dong Z M, Dong L S, Li Y S. Macromolecules, 2007, 40: 6257-6267. doi:10.1021/ma070989ahttp://dx.doi.org/10.1021/ma070989a
Liu H, Song W, Chen F, Guo L, Zhang J. Macromolecules, 2011, 44: 1513-1522. doi:10.1021/ma1026934http://dx.doi.org/10.1021/ma1026934
Lins L C, Livi S, Duchet-Rumeau J, Gerard J F. RSC Adv, 2015, 5: 59082-59092. doi:10.1039/c5ra10241chttp://dx.doi.org/10.1039/c5ra10241c
Wang P, Zhou Y, Xu P, Ding Y. Ionics, 2019, 25: 3189-3196. doi:10.1007/s11581-019-02871-3http://dx.doi.org/10.1007/s11581-019-02871-3
Wu Cong(伍聪), Yang Danda(杨丹丹), Wu Gan(吴刚), Chen Sichong(陈思翀). Acta Polymerica Sinica(高分子学报), 2021, 52(2): 176-185. doi:10.11777/j.issn1000-3304.2020.20161http://dx.doi.org/10.11777/j.issn1000-3304.2020.20161
Chen L, Hu K, Sun S T, Jiang H, Huang D, Zhang K Y, Pan L, Li Y S. Chinese J Polym Sci, 2018, 36: 1342-1352. doi:10.1007/s10118-018-2143-6http://dx.doi.org/10.1007/s10118-018-2143-6
Huang D, Ding Y, Jiang H, Sun S, Ma Z, Zhang K Y, Pan L, Li Y S. ACS Sustain Chem Eng, 2020, 8: 573-585. doi:10.1021/acssuschemeng.9b06123http://dx.doi.org/10.1021/acssuschemeng.9b06123
Li Z X, Shi S W, Yang F, Cao D F, Zhang K Y, Wang B, Ma Z, Pan L, Li Y S. ACS Omega, 2020, 5: 13148-13157. doi:10.1021/acsomega.0c01165http://dx.doi.org/10.1021/acsomega.0c01165
Sun S T, Wang H, Huang D, Ding Y L, Zhang Y, Song D P, Zhang K Y, Pan L, Li Y S. Chinese J Polym Sci, 2020, 38: 1335-1344. doi:10.1007/s10118-020-2439-1http://dx.doi.org/10.1007/s10118-020-2439-1
Jia Z, Yuan W, Sheng C, Zhao H, Hu H, Baker G L. J Polym Sci Part A: Polym Chem, 2015, 53: 1339-1350. doi:10.1002/pola.27567http://dx.doi.org/10.1002/pola.27567
Malmierca M A, González-Jiménez A, Mora-Barrantes I, Posadas P, Rodríguez A, Ibarra L, Nogales A, Saalwachter K, Valentín J L. Macromolecules, 2014, 47: 5655-5667. doi:10.1021/ma501208ghttp://dx.doi.org/10.1021/ma501208g
Cui J, Nie F M, Yang J X, Pan L, Ma Z, Li Y S. J Mater Chem A, 2017, 5: 25220-25229. doi:10.1039/c7ta06793chttp://dx.doi.org/10.1039/c7ta06793c
Hu H, Yuan W, Lu L, Zhao H, Jia Z, Baker G L. J Polym Sci, Part A: Polym Chem, 2014, 52: 2104-2110. doi:10.1002/pola.27217http://dx.doi.org/10.1002/pola.27217
Lattimer R P. J Anal Appl Pyrolysis, 2000, 56: 61-78. doi:10.1016/s0165-2370(00)00074-7http://dx.doi.org/10.1016/s0165-2370(00)00074-7
Guo M K, Zhang M L, He D, Hu J, Wang X, Gong C L, Xie X L, Xue Z G. Electrochim Acta, 2017, 255: 396-404. doi:10.1016/j.electacta.2017.10.033http://dx.doi.org/10.1016/j.electacta.2017.10.033
Benzaqui M, Semino R, Carn F, Tavares S R, Menguy N, Giménez-Marqués M, Bellido E, Horcajada P, Berthelot T, Kuzminova A I, Dmitrenko M E, Penkova A V, Roizard D, Serre C, Maurin G, Steunou N. ACS Sustain Chem Eng, 2019, 7: 6629-6639. doi:10.1021/acssuschemeng.8b05587http://dx.doi.org/10.1021/acssuschemeng.8b05587
Shangguan Y, Chen F, Yang J, Jia E, Zheng Q. Polymer, 2017, 112: 318-324. doi:10.1016/j.polymer.2017.02.022http://dx.doi.org/10.1016/j.polymer.2017.02.022
Han S, Kim C, Kwon D. Polymer, 1997, 38: 317-323. doi:10.1016/s0032-3861(97)88175-xhttp://dx.doi.org/10.1016/s0032-3861(97)88175-x
0
浏览量
57
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构