浏览全部资源
扫码关注微信
南开大学物理科学学院 教育部功能高分子材料重点实验室 天津 300071
E-mail: baohui@nankai.edu.cn
纸质出版日期:2021-10-20,
网络出版日期:2021-08-18,
收稿日期:2021-03-13,
修回日期:2021-03-23,
扫 描 看 全 文
胡卨俊,郝金龙,王铮等.循环溶剂退火条件下柱状相组成的两嵌段共聚物薄膜自组装行为的模拟研究[J].高分子学报,2021,52(10):1379-1389.
Hu Xie-jun,Hao Jin-long,Wang Zheng,et al.Self-assembly of Diblock Copolymer Films upon Cyclic Solvent Annealing: A Simulation Study[J].ACTA POLYMERICA SINICA,2021,52(10):1379-1389.
胡卨俊,郝金龙,王铮等.循环溶剂退火条件下柱状相组成的两嵌段共聚物薄膜自组装行为的模拟研究[J].高分子学报,2021,52(10):1379-1389. DOI: 10.11777/j.issn1000-3304.2021.21082.
Hu Xie-jun,Hao Jin-long,Wang Zheng,et al.Self-assembly of Diblock Copolymer Films upon Cyclic Solvent Annealing: A Simulation Study[J].ACTA POLYMERICA SINICA,2021,52(10):1379-1389. DOI: 10.11777/j.issn1000-3304.2021.21082.
采用蒙特卡洛模拟研究了体相形成柱状相的两嵌段共聚物薄膜在循环溶剂退火条件下的自组装行为. 结果表明,在循环溶剂退火条件下,溶剂蒸发速率、溶剂选择性和有效薄膜厚度与柱状相周期的匹配性都会影响形成垂直柱状结构的表面选择性窗口(
β
窗口). 当溶剂蒸发速率在一定范围内时,
β
窗口随蒸发速率的增大而增大. 溶剂对长嵌段的选择性越强,形成垂直柱状结构的
β
窗口越宽. 当溶胀比约为1.5时的薄膜厚度与柱状相周期不匹配时更利于形成垂直柱状结构. 通过对链节均方位移曲线的分析发现,在循环溶剂退火条件下高分子链节在垂直方向的扩散始终快于平行方向,因此链节优先沿垂直方向聚集,从而促进了垂直柱状结构的形成.循环溶剂退火条件下,
β
窗口比溶剂退火条件下的宽,同时大幅度减少了退火时间.
Solvent (-vapor) annealing (SA) has been widely used to promote the formation of perpendicularly oriented structures in self-assembly of block copolymer thin films. In SA
as-prepared block copolymer films are exposed to the vapor of solvent to form a swollen and mobile polymer film atop the substrate
and finally the solvent is evaporated. Tranditional SA contains only one swollen-evaporation process
while cyclic solvent annealing (CSA) contains multiple swollen-evaporation processes in a cyclic means. The existence of solvent affects the effective interaction between the blocks
the effective film thickness
the effective surface preference
and the effective volume fractions of the blocks
and hence affects the resulting morphology. The morphologies induced by the presence of solvent may be trapped during the solvent evaporation process. Hence
the resulting morphology after SA/CSA may be quite different from that without SA/CSA treatment. Furthermore
the swollen- evaporation processes in CSA can be designed to facilitate the formation of perpendicularly-orientated structures. In this study
we present our lattice Monte Carlo simulation results of the self-assembly for cylinder-forming diblock copolymer films under CSA. Our simulations are based on the "single-site bond fluctuation" model
and it is assumed that the maximum swelling ratio of the film in each swollen-evaporation cycle decreases linearly with the increase of the cycle number. This assumption ensures that relatively large rearrangement of microdomains occurs when the number of cycles is relatively small
and the resulting characteristic structure can be kept effectively in the following cycles. The results show that the surface preference window (
β
-window) of perpendicular cylinders is affected by the solvent evaporation rate
solvent selectivity and commensurability between the film thickness and the bulk period. When the solvent evaporation rate is intermediate
the
β
-window enlarges with increasing it. A stronger solvent selectivity for the majority block as well as dismatch between the film thickness at a swelling ratio of 1.5 and the period of the bulk cylindrical phase enlarges the
β
-window. By analyzing the mean-square displacements
it is found that the diffusion of the polymer segments in the perpendicular direction is always faster than that in the parallel direction
which leads to that segments are preferentially gathered along the perpendicular direction
and hence promotes the formation of the perpendicular cylinders. Compared with that in the SA treatment for the same system
the
β
-window of perpendicular cylinders is wider and the annealing time can be greatly reduced under CSA treatment.
嵌段共聚物循环溶剂退火取向柱状相
Block copolymerCyclic solvent (vapor) annealingOrientationCylindrical phase
Bates F S, Fredrickson G H. Annu Rev Phys Chem, 1990, 41(1): 525-557. doi:10.1146/annurev.pc.41.100190.002521http://dx.doi.org/10.1146/annurev.pc.41.100190.002521
Kim S H, Misner M J, Xu T, Kimura M, Russell T P. Adv Mater, 2004, 16(3): 226-231. doi:10.1002/adma.200304906http://dx.doi.org/10.1002/adma.200304906
Darling S B. Prog Polym Sci, 2007, 32(10): 1152-1204. doi:10.1016/j.progpolymsci.2007.05.004http://dx.doi.org/10.1016/j.progpolymsci.2007.05.004
Zhang Xinghua(张兴华), Yan Dadong(严大东). Acta Polymerica Sinica(高分子学报), 2014, (8): 1041-1047
Li Zhaolei(李照磊), Zhou Dongshan(周东山), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1179-1197
Li Xiaoxia(李小霞), Gu Mengxin(谷梦鑫), Zhang Liangshun(张良顺), Lin Jiaping(林嘉平). Acta Polymerica Sinica(高分子学报), 2020, 51(11): 1257-1266
Glass R, Mller M, Spatz J P. Nanotechnology, 2003, 14(10): 1153-1160. doi:10.1088/0957-4484/14/10/314http://dx.doi.org/10.1088/0957-4484/14/10/314
Stoykovich M P, Kang H, Daoulas K C, Liu G, Liu C C, de Pablo J J, Müller M, Nealey P F. ACS Nano, 2007, 1(3): 168-175. doi:10.1021/nn700164phttp://dx.doi.org/10.1021/nn700164p
Jeong S-J, Kim J Y, Kim B H, Moon H-S, Kim S O. Mater Today, 2013, 16(12): 468-476. doi:10.1016/j.mattod.2013.11.002http://dx.doi.org/10.1016/j.mattod.2013.11.002
Ulbricht M. Polymer, 2006, 47(7): 2217-2262. doi:10.1016/j.polymer.2006.01.084http://dx.doi.org/10.1016/j.polymer.2006.01.084
Yang S Y, Ryu I, Kim H Y, Kim J K, Russell T P. Adv Mater, 2006, 18(6): 709-712. doi:10.1002/adma.200501500http://dx.doi.org/10.1002/adma.200501500
Phillip W A, O'Neill B, Rodwogin M, Hillmyer M A, Cussler E L. ACS Appl Mater Interfaces, 2010, 2(3): 847-853. doi:10.1021/am900882thttp://dx.doi.org/10.1021/am900882t
Thurn-Albrecht T, Steiner R, Derouchey J, Stafford C M, Huang E, Bal M, Tuominen M, Hawker C J, Russell T P. Adv Mater, 2000, 12(11): 787-791. doi:10.1002/(sici)1521-4095(200006)12:11<787::aid-adma787>3.0.co;2-1http://dx.doi.org/10.1002/(sici)1521-4095(200006)12:11<787::aid-adma787>3.0.co;2-1
Wang Q, Nealey P F, de Pablo J J. Macromolecules, 2001, 34(10): 3458-3470. doi:10.1021/ma0018751http://dx.doi.org/10.1021/ma0018751
Gu X, Gunkel I, Hexemer A, Gu W, Russell T P. Adv Mater, 2014, 26(2): 273-281. doi:10.1002/adma.201302562http://dx.doi.org/10.1002/adma.201302562
Nandan B, Vyas M K, Böhme M, Stamm M. Macromolecules, 2010, 43(5): 2463-2473. doi:10.1021/ma901693chttp://dx.doi.org/10.1021/ma901693c
Yu B, Li B H, Jin Q, Ding D, Shi A C. Soft Matter, 2011, 7(21): 10227-10240. doi:10.1039/c1sm05947ehttp://dx.doi.org/10.1039/c1sm05947e
Mansky P, DeRouchey J, Russell T P, Mays J, Pitsikalis M, Morkved T, Jaeger H. Macromolecules, 1998, 31(13): 4399-4401. doi:10.1021/ma980299uhttp://dx.doi.org/10.1021/ma980299u
Knoll A, Horvat A, Lyakhova K S, Krausch G, Sevink G J A, Zvelindovsky A V, Magerle R. Phys Rev Lett, 2002, 89(3): 035501. doi:10.1103/physrevlett.89.035501http://dx.doi.org/10.1103/physrevlett.89.035501
Bae J, Cha S H. Polymer, 2014, 55(8): 2014-2020. doi:10.1016/j.polymer.2014.02.054http://dx.doi.org/10.1016/j.polymer.2014.02.054
Kan D, He X. Soft Matter, 2016, 12(19): 4449-4456. doi:10.1039/c5sm03154khttp://dx.doi.org/10.1039/c5sm03154k
Hüttner S, Sommer M, Chiche A, Krausch G, Steiner U, Thelakkat M. Soft Matter, 2009, 5(21): 4206-4211. doi:10.1039/b907147dhttp://dx.doi.org/10.1039/b907147d
Sinturel C, Vayer M n, Morris M, Hillmyer M A. Macromolecules, 2013, 46(14): 5399-5415. doi:10.1021/ma400735ahttp://dx.doi.org/10.1021/ma400735a
Paradiso S P, Delaney K T, García-Cervera C J, Ceniceros H D, Fredrickson G H. ACS Macro Lett, 2014, 3(1): 16-20. doi:10.1021/mz400572rhttp://dx.doi.org/10.1021/mz400572r
Berezkin A V, Papadakis C M, Potemkin I I. Macromolecules, 2016, 49(1): 415-424. doi:10.1021/acs.macromol.5b01771http://dx.doi.org/10.1021/acs.macromol.5b01771
Hao J, Wang Z, Wang Z, Yin Y, Jiang R, Li B H, Wang Q. Macromolecules, 2017, 50(11): 4384-4396. doi:10.1021/acs.macromol.7b00200http://dx.doi.org/10.1021/acs.macromol.7b00200
Paradiso S P, Delaney K T, García-Cervera C J, Ceniceros H D, Fredrickson G H. Macromolecules, 2016, 49(5): 1743-1751. doi:10.1021/acs.macromol.5b02107http://dx.doi.org/10.1021/acs.macromol.5b02107
Hong S W, Huh J, Gu X, Lee D H, Jo W H, Park S, Xu T, Russell Thomas P. Proc Natl Acad Sci USA, 2012, 109(5): 1402-1406. doi:10.1073/pnas.1115803109http://dx.doi.org/10.1073/pnas.1115803109
Liu G, Ramirez-Hernandez A, Yoshida H, Nygard K, Satapathy D K, Bunk O, de Pablo J J, Nealey P F. Phys Rev Lett, 2012, 108(6): 065502. doi:10.1103/physrevlett.108.065502http://dx.doi.org/10.1103/physrevlett.108.065502
Ramírez-Hernández A, Suh H S, Nealey P F, de Pablo J J. Macromolecules, 2014, 47(10): 3520-3527. doi:10.1021/ma500411qhttp://dx.doi.org/10.1021/ma500411q
Peng M, Ma S, Hu J, Wang R. Soft Matter, 2015, 11(33): 6642-6651. doi:10.1039/c5sm01334hhttp://dx.doi.org/10.1039/c5sm01334h
Zhang Jingxue(张景雪), Wu Jiaping(吴佳坪), Wang Qiang(王强), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2021, 52(1): 102-112
Zhu Ziting(朱子霆), Gao Huanhuan(高欢欢), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2017, (9): 1471-1478. doi:10.11777/j.issnl000-3304.2017.17055http://dx.doi.org/10.11777/j.issnl000-3304.2017.17055
Zheng Lingfei(郑玲飞), Wang Zheng(王铮), Yin Yuha(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2019, 50(9): 60-69
Liu Zhiyao (刘志瑶), Wang Zheng(王铮), Yin Yuha(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2019, 50(11): 96-104
Han Zhengwei(韩政伟), Sun Pingchuan(孙平川), Li Baohui(李宝会), Jin Qinghua(金庆华), Ding Datong(丁大同). Acta Polymerica Sinica(高分子学报), 2006, (4): 593-596
Kirkpatrick S, Gelatt C D, Vecchi M P. Science, 1983, 220(4598): 671-680. doi:10.1126/science.220.4598.671http://dx.doi.org/10.1126/science.220.4598.671
Yu B, Sun P, Chen T, Jin Q, Ding D, Li B, Shi A C. Phys Rev Lett, 2006, 96(13): 138306. doi:10.1103/physrevlett.96.138306http://dx.doi.org/10.1103/physrevlett.96.138306
Carmesin I, Kremer K. Macromolecules, 1988, 21(9): 2819-2823. doi:10.1021/ma00187a030http://dx.doi.org/10.1021/ma00187a030
Larson R G. J Chem Phys, 1989, 91(4): 2479-2488. doi:10.1063/1.457007http://dx.doi.org/10.1063/1.457007
Hao Jinlong(郝金龙), Wang Zhan(汪湛), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2017, (11): 1841-1850
Son J G, Gotrik K W, Ross C A. ACS Macro Lett, 2012, 1(11): 1279-1284. doi:10.1021/mz300475ghttp://dx.doi.org/10.1021/mz300475g
Tang Q, Müller M, Li C Y, Hu W. Phys Rev Lett, 2019, 123(20): 207801. doi:10.1103/physrevlett.123.207801http://dx.doi.org/10.1103/physrevlett.123.207801
0
浏览量
44
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构