浏览全部资源
扫码关注微信
精细化工国家重点实验室 大连理工大学 大连 116024
E-mail: zhouhui@dlut.edu.cn
xblu@dlut.edu.cn
纸质出版日期:2021-10-20,
网络出版日期:2021-08-09,
收稿日期:2021-03-14,
修回日期:2021-04-06,
扫 描 看 全 文
王霞弟,孙星宇,罗婧等.聚(1,4-环己二烯碳酸酯)立体低聚物的合成及微结构分析[J].高分子学报,2021,52(10):1316-1322.
Wang Xia-di,Sun Xing-yu,Luo Jing,et al.Synthesis and Microstructure Analysis of Stereoregular Poly(1,4-cyclohexadiene carbonate) Oligomers[J].ACTA POLYMERICA SINICA,2021,52(10):1316-1322.
王霞弟,孙星宇,罗婧等.聚(1,4-环己二烯碳酸酯)立体低聚物的合成及微结构分析[J].高分子学报,2021,52(10):1316-1322. DOI: 10.11777/j.issn1000-3304.2021.21085.
Wang Xia-di,Sun Xing-yu,Luo Jing,et al.Synthesis and Microstructure Analysis of Stereoregular Poly(1,4-cyclohexadiene carbonate) Oligomers[J].ACTA POLYMERICA SINICA,2021,52(10):1316-1322. DOI: 10.11777/j.issn1000-3304.2021.21085.
聚合物微结构控制是配位催化聚合领域最重要的目标之一. 而合成各种立构规整性低聚物及其核磁碳谱研究是聚合物微结构定性和定量分析的关键. 本文以手性环己-4-烯-1
2-二醇为原料,采用
N
N
'-羰基二咪唑和三光气作为羰化试剂,设计合成了CO
2
/1
2-环氧-4-环己烯交替共聚物(聚(1
4-环己二烯碳酸酯),PCEC)全同立构和间同立构的二聚体、四聚体、六聚体、八聚体和十二聚体模型化合物. 通过分析全同立构和间同立构模型化合物的核磁碳谱,完成了PCEC微结构的碳谱信息归属. 发现聚合物全同立构序列的羰基、次甲基和亚甲基区域的出峰位置分别在
δ
=154.04、73.83和29.91;间同立构序列的羰基、次甲基和亚甲基区域的出峰位置分别在
δ
=153.72、72.97和28.98.
The alternating copolymerization of carbon dioxide (CO
2
) and epoxides to prepare degradable polycarbonates is an important green polymerization process
since CO
2
is an abundant
cheap and nontoxic renewable C1 resource. Because of their good environmental friendliness and degradability
these materials are expected to be widely used in disposable packaging
degradable agricultural films
foaming agents and adhesives. For the copolymerization of substituted epoxides with CO
2
the stereochemistry inherent to the epoxide monomer provides the possibility to synthesize stereoregular polycarbonates by establishing chiral centers in the main chain of the resultant copolymers with control of the absolute configuration. Indeed
there is a great correlation between the stereochemistry of polymer main chain and its physical properties. The precise control of polymer microstructure is one of the most important goals in the field of coordination catalysis polymerization. The synthesis of the corresponding model oligomers and analysis of their
13
C-NMR spectra play a critical role in qualitative and quantitative analysis of polymer microstructure. In the present contribution
(
R
R
)/(
S
S
)-cyclohex-4-ene-1
2-diols were used as starting materials to synthesize various isotactic and syndiotactic model compounds (oligomers with 2
4
6
8 and 12 degree of polymerization) of poly(1
4-cyclohexadiene carbonate) (PCEC)
using
N
N'
-carbonyldiimidazole and triphosgene as carbonylation reagents. By comparing the signals in the
13
C-NMR spectra of various steroregular oligomers
it can be concluded that the signals at
δ
=154.04
73.83 and 29.91 are assigned to carbonyl
methine and methylene of isotactic PCEC
respectively
while the signals at
δ
=153.72
72.97 and 28.98 are attributed to carbonyl
methine and methylene of syndiotactic polycarbonate
respectively.
二氧化碳聚碳酸酯全同结构间同结构核磁碳谱
Carbon dioxidePolycarbonateIsotactic structureSyndiotactic structureNMR spectroscopy
Allen S D, Byrne C M, Coates G W. Carbon dioxide as a renewable C1 feedstock synthesis and characterization of polycarbonates from the alternating copolymerization of epoxides and CO2. In: Bozell J J, Patel M K, eds. Feedstocks for the Future: Renewables for the Production of Chemicals and Materials. American Chemical Society, 2006. 116-129. doi:10.1021/bk-2006-0921.ch009http://dx.doi.org/10.1021/bk-2006-0921.ch009
Aresta M, Dibenedetto A. Dalton Trans, 2007, (28): 2975-2992. doi:10.1039/b700658fhttp://dx.doi.org/10.1039/b700658f
Darensbourg D J. Chem Rev, 2007, 107(6): 2388-2410. doi:10.1021/cr068363qhttp://dx.doi.org/10.1021/cr068363q
Omae I. Catal Today, 2006, 115(1-4): 33-52. doi:10.1016/j.cattod.2006.02.024http://dx.doi.org/10.1016/j.cattod.2006.02.024
Qin Y, Wang X. Biotechnol J, 2010, 5(11): 1164-1180. doi:10.1002/biot.201000134http://dx.doi.org/10.1002/biot.201000134
Rayner C M. Org Process Res Dev, 2007, 11(1): 121-132. doi:10.1021/op060165dhttp://dx.doi.org/10.1021/op060165d
Aresta M. Carbon dioxide utilization: Greening both the energy and chemical industry: An overview. In: Liu C J, Mallinson R G, Aresta M, eds. Utilization of Greenhouse Gases. American Chemical Society, 2003. 2-39. doi:10.1021/bk-2003-0852.ch001http://dx.doi.org/10.1021/bk-2003-0852.ch001
Lv Xiaobing(吕小兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1166-1178. doi:10.11777/j.issn1000-3304.2016.16151http://dx.doi.org/10.11777/j.issn1000-3304.2016.16151
Wu G P, Zu Y P, Xu P X, Ren W M, Lu X B. Chem Asian J, 2013, 8(8): 1854-1862. doi:10.1002/asia.201300115http://dx.doi.org/10.1002/asia.201300115
Chisholm M H, Navarro-Llobet D, Zhou Z P. Macromolecules, 2002, 35(17): 6494-6504. doi:10.1021/ma020348+http://dx.doi.org/10.1021/ma020348+
Byrnes M J, Chisholm M H, Hadad C M, Zhou Z P. Macromolecules, 2004, 37(11): 4139-4145. doi:10.1021/ma049850fhttp://dx.doi.org/10.1021/ma049850f
Salmeia K A, Vagin S, Anderson C E, Rieger B. Macromolecules, 2012, 45(21): 8604-8613. doi:10.1021/ma301916rhttp://dx.doi.org/10.1021/ma301916r
Wu G P, Wei S H, Ren W M, Lu X B, Li B, Zu Y P, Darensbourg D J. Energy Environ Sci, 2011, 4(12): 5084-5092. doi:10.1039/c1ee02566jhttp://dx.doi.org/10.1039/c1ee02566j
Nakano K, Nozaki K, Hiyama T. Macromolecules, 2001, 34(18): 6325-6332. doi:10.1021/ma010732rhttp://dx.doi.org/10.1021/ma010732r
Liu Y, Li R R, Lu X B. Macromolecules, 2015, 48(19): 6941-6947. doi:10.1021/acs.macromol.5b01759http://dx.doi.org/10.1021/acs.macromol.5b01759
Luo Jing(罗婧), Sun Xingyu(孙星宇), Wang Xiadi(王霞弟), Zhou Hui(周辉), Lu Xiaobing(吕小兵). Chinese Science Bulletin(科学通报), 2020, 65(31): 3418-3428. doi:10.1360/tb-2020-0320http://dx.doi.org/10.1360/tb-2020-0320
Liu Y, Wang M, Ren W M, Xu Y C, Lu X B. Angew Chem Int Ed, 2015, 54(24): 7042-7046. doi:10.1002/anie.201501417http://dx.doi.org/10.1002/anie.201501417
Diallo A K, Kirillov E, Slawinski M, Brusson, J M, Guillaume S M, Carpentier J F. Polym Chem, 2015, 6: 1961-1971. doi:10.1039/c4py01713ghttp://dx.doi.org/10.1039/c4py01713g
0
浏览量
48
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构