浏览全部资源
扫码关注微信
1.中国科学院广州能源研究所 中国科学院可再生能源重点实验室 广东省新能源和可再生能源研究开发与应用重点实验室 广州 510640
2.中国科学技术大学纳米科学技术学院 苏州 215123
E-mail: lzzhang@ms.giec.ac.cn
纸质出版日期:2021-11-20,
网络出版日期:2021-08-20,
收稿日期:2021-03-29,
修回日期:2021-04-16,
扫 描 看 全 文
邓攀,陈程,张灵志.聚乙烯亚胺/聚丙烯酰胺复合交联型水性粘结剂在锂离子电池Si/C负极中的应用[J].高分子学报,2021,52(11):1473-1480.
Deng Pan,Cheng Chen,Zhang Ling-zhi.Polyethyleneimine/Polyacrylamide Composite as Cross-linkable Aqueous Binder for Si/C Anodes of Lithium-ion Batteries[J].ACTA POLYMERICA SINICA,2021,52(11):1473-1480.
邓攀,陈程,张灵志.聚乙烯亚胺/聚丙烯酰胺复合交联型水性粘结剂在锂离子电池Si/C负极中的应用[J].高分子学报,2021,52(11):1473-1480. DOI: 10.11777/j.issn1000-3304.2021.21095.
Deng Pan,Cheng Chen,Zhang Ling-zhi.Polyethyleneimine/Polyacrylamide Composite as Cross-linkable Aqueous Binder for Si/C Anodes of Lithium-ion Batteries[J].ACTA POLYMERICA SINICA,2021,52(11):1473-1480. DOI: 10.11777/j.issn1000-3304.2021.21095.
高比容量Si/C负极材料在充/放电循环过程中,由于硅的体积膨胀效应,极易引起电极材料的粉碎和脱落进而导致电池容量衰减和循环寿命缩短,开发新型Si/C负极粘结剂是提高电池循环性能的有效途径之一. 通过对支化聚乙烯亚胺(BPEI)与聚丙烯酰胺(PAM)进行原位热交联制备三维互穿网状聚合物水性粘结剂(BPEI-PAM),并用于高比能锂离子电池Si/C负极的电化学性能研究. 用TGA、DSC对复合粘结剂进行了热性能表征,利用FTIR进行结构表征. 与商用水性粘结剂羧甲基纤维素/丁苯橡胶(CMC/SBR)作比较,研究BPEI-PAM电极的电化学性能. 当BPEI与PAM原位热交联反应摩尔比为1∶6时,制备的Si/C极片剥离强度达0.82 N/cm,高于CMC/SBR (0.32 N/cm). 提高极片的负载量至3.0 mg/cm
2
时,200次循环后容量保持率为81.2%,优于CMC/ SBR(76.1%). 研究结果表明,通过交联制备的BPEI-PAM粘结剂具有更高的粘结性能,能明显提高Si/C电极的电化学性能.
High-capacity Si/C anodes face the huge volume change during Li insertion/extraction process
which consequently leads to the pulverization of the silicon and eventually capacity fading and poor cycle life of lithium-ion batteries. To tackle this issue
new binder materials is extensively explored to improve the cycle life by effectively alleviating the huge volume change
and thus improving the cycling life. In this work
a new cross-linkable aqueous composite binder based on branched polyethyleneimine and polyacrylamide (BPEI-PAM) for Si/C anodes is reported. TGA
DSC
FTIR measurements are performed to characterize the crosslinking reaction of BPEI and PAM and their thermal properties. The electrochemical performances of the Si anodes with BPEI-PAM new binder are investigated and compared with the conventional aqueous binder of carboxymethyl cellulose/styrene butadiene rubber (CMC/SBR). By using the optimized BPEI-PAM binder (1:6 in molar ratio)
the Si/C electrode exhibits the higher peel strength of 0.82 N/cm as compared with 0.32 N/cm for CMC/SBR. Even at a high loading of 3.0 mg/cm
2
the Si/C electrode with BPEI-PAM can still maintain 81.3% capacity retention after 200 cycles
better than 76.1% for the electrode with CMC/SBR. This improved electrochemical performances can be attributed to the higher adhesion property of BPEI-PAM binder after crosslinking during the process of Si/C electrodes.
锂离子电池Si/C负极水性粘结剂
Lithium-ion batterySi/C anodeAqueous binder
Kang B, Ceder G. Nature, 2009, 458: 190-193. doi:10.1038/nature07853http://dx.doi.org/10.1038/nature07853
Armand M, Tarascon J M. Nature, 2008, 451: 652-657. doi:10.1038/451652ahttp://dx.doi.org/10.1038/451652a
Liang B, Liu Y P, Xu Y H, J. Power Sources, 2014, 267: 469-490. doi:10.1016/j.jpowsour.2014.05.096http://dx.doi.org/10.1016/j.jpowsour.2014.05.096
Tian H J, Xin F X, Wang X L, He W, Han W QJ. Materiomics, 2015, 1: 153-169. doi:10.1016/j.jmat.2015.03.004http://dx.doi.org/10.1016/j.jmat.2015.03.004
Kim H, Seo M, Park M H, Cho J. Angew Chem, 2010, 49: 2146-2149. doi:10.1002/anie.200906287http://dx.doi.org/10.1002/anie.200906287
Yue L, Wang S Q, Zhao X Y, Zhang L Z. J Mater Chem, 2012, 22: 1094-1099. doi:10.1039/c1jm14568ahttp://dx.doi.org/10.1039/c1jm14568a
Zhao X Y, Niketic S, Yim C H, Zhou J, Wang J, Abu-Lebdeh Y. ACS Omega, 2018, 3: 11684-11690. doi:10.1021/acsomega.8b01388http://dx.doi.org/10.1021/acsomega.8b01388
Hochgatterer N S, Schweiger M R, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Electrochem Solid ST, 2008, 11: A76-A80. doi:10.1149/1.2888173http://dx.doi.org/10.1149/1.2888173
Liu J, Zhang Q, Wu Z Y, Wu J H, Li J T, Huang L, Sun S G. Chem Commun, 2014, 50: 6386-6389. doi:10.1039/c4cc00081ahttp://dx.doi.org/10.1039/c4cc00081a
Hu B, Shkrob I A, Zhang S, Zhang L H, Zhang J J, Li Y, Liao C, Zhang Z C, Lu W Q, Zhang L. J Power Sources, 2018, 378: 671-676. doi:10.1016/j.jpowsour.2017.12.068http://dx.doi.org/10.1016/j.jpowsour.2017.12.068
Hays K A, Ruther R E, Kukay A J, Cao P F, Saitob T, Wood III D L, Lia J L. J Power Sources, 2018, 384: 136-144. doi:10.1016/j.jpowsour.2018.02.085http://dx.doi.org/10.1016/j.jpowsour.2018.02.085
Park H K, Kong B S, Oh E S. Electrochem Commun, 2011, 13: 1051-1053. doi:10.1016/j.elecom.2011.06.034http://dx.doi.org/10.1016/j.elecom.2011.06.034
Kuruba R, Datta M K, Damodaran K, Jampani P H, Gattu B, Patel P P, Shanthi P M, Damle S, Kumta P N. J Power Sources, 2015, 298: 331-340. doi:10.1016/j.jpowsour.2015.07.102http://dx.doi.org/10.1016/j.jpowsour.2015.07.102
Yim C H, Courtel F M, Abu-Lebdeh Y. J Mater Chem A, 2013, 1: 8234-8243. doi:10.1039/c3ta10883jhttp://dx.doi.org/10.1039/c3ta10883j
Zuo P, Yang W, Cheng X, Yin G P. Ionics, 2011, 17: 87-90. doi:10.1007/s11581-010-0494-2http://dx.doi.org/10.1007/s11581-010-0494-2
Feng K, Li M, Zhang Y N, Liu W W, Kashkooli A G, Xiao X C, Chen Z W. Electrochim Acta, 2019, 309: 157-165. doi:10.1016/j.electacta.2019.04.033http://dx.doi.org/10.1016/j.electacta.2019.04.033
Gendensuren B, Oh E S. J Power Sources, 2018, 384: 379-386. doi:10.1016/j.jpowsour.2018.03.009http://dx.doi.org/10.1016/j.jpowsour.2018.03.009
Zhang J H, Wang N, Zhang W, Fang S, Yu Z L, Shi B N, Yang J Y. J Colloid Interface Sci , 2020, 578: 452-460. doi:10.1016/j.jcis.2020.06.008http://dx.doi.org/10.1016/j.jcis.2020.06.008
Huang S, Ren J G, Liu R, Bai Y, Li X L, Huang Y Y, Yue M, He X Q, Yuan G H. New J Chem, 2018, 42: 6742-6749. doi:10.1039/c8nj00423dhttp://dx.doi.org/10.1039/c8nj00423d
Liu Z, Han S J, Xu C, Luo Y W, Peng N, Qin C Y, Zhou M J, Wang W Q, Chen L W, Okada S. RSC Adv, 2016, 6: 68371-68378. doi:10.1039/c6ra12232ahttp://dx.doi.org/10.1039/c6ra12232a
El-Karsani K S M, Al-Muntasheri G A, Hussein I A. SPE J, 2014, 19: 135-149. doi:10.2118/163100-pahttp://dx.doi.org/10.2118/163100-pa
Sahiner N. Colloid Surf A-Physicochem Eng Asp, 2013, 433: 212-218. doi:10.1016/j.colsurfa.2013.05.029http://dx.doi.org/10.1016/j.colsurfa.2013.05.029
Wang X J, Hu D D, Yang J X. Chem Mater, 2007, 19: 2610-2621. doi:10.1021/cm062561ghttp://dx.doi.org/10.1021/cm062561g
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. Science, 2011, 334: 75-79. doi:10.1126/science.1209150http://dx.doi.org/10.1126/science.1209150
Yu L B, Liu J, He S S, Huang C F, Gan L H, Gong Z L, Long M N. J Phys Chem Solids, 2019, 135: 109-113. doi:10.1016/j.jpcs.2019.109113http://dx.doi.org/10.1016/j.jpcs.2019.109113
Yun Q B, Qin X Y, Lv W, He Y B, Li B H, Kang F Y, Yang Q H. Carbon, 2015, 93: 59-67. doi:10.1016/j.carbon.2015.05.032http://dx.doi.org/10.1016/j.carbon.2015.05.032
Chan C K, Peng H, Liu G, Mcilwrath K, Xiao F Z, Huggins R A, Yi C. Nat Nanotechnol, 2008, 3: 31-35. doi:10.1038/nnano.2007.411http://dx.doi.org/10.1038/nnano.2007.411
Chen C, Lee S H, Cho M, Kim J, Lee Y. ACS Appl Mater Interfaces, 2016, 8: 2658-2665. doi:10.1021/acsami.5b10673http://dx.doi.org/10.1021/acsami.5b10673
Liu Y Y, Gu J J , Zhang J L, Yu F, Wang J, Nie N, Li W. RSC Adv, 2015, 5: 9745-9751. doi:10.1039/c4ra14791jhttp://dx.doi.org/10.1039/c4ra14791j
0
浏览量
82
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构