浏览全部资源
扫码关注微信
中山大学化学工程与技术学院 珠海 519000
E-mail: yanghch8@mail.sysu.edu.cn
liweihua3@mail.sysu.edu.cn
纸质出版日期:2021-12-20,
网络出版日期:2021-08-26,
收稿日期:2021-04-23,
修回日期:2021-05-19,
扫 描 看 全 文
赵书瑞,申婷,李玉堂等.基于呼吸图法的环氧树脂基超滑液体灌注防冰涂层[J].高分子学报,2021,52(12):1622-1631.
Zhao Shu-rui,Shen Ting,Li Yu-tang,et al. Epoxy-resin-based Slippery Liquid Infused Anti-icing Coating Based on Breath Figure[J].ACTA POLYMERICA SINICA,2021,52(12):1622-1631.
赵书瑞,申婷,李玉堂等.基于呼吸图法的环氧树脂基超滑液体灌注防冰涂层[J].高分子学报,2021,52(12):1622-1631. DOI: 10.11777/j.issn1000-3304.2021.21116.
Zhao Shu-rui,Shen Ting,Li Yu-tang,et al. Epoxy-resin-based Slippery Liquid Infused Anti-icing Coating Based on Breath Figure[J].ACTA POLYMERICA SINICA,2021,52(12):1622-1631. DOI: 10.11777/j.issn1000-3304.2021.21116.
通过呼吸图法构筑了多孔环氧树脂基底,并在此基础上通过聚二甲基硅氧烷改性以及二甲基硅油润滑液灌注制备了具有优异润滑性的液体灌注涂层. 实验结果表明,基底表面孔径及孔隙率随着环境湿度增大而增大,且涂层在不同金属基底上都有良好的黏附性能. 基于上述基底所制备的液体灌注涂层具有较低的滚动角(2°),且对多种液体具有良好的滑动性. 该涂层被用于冰黏附的防治,展现出较低的冰黏附强度(175 kPa)及较长的延迟结冰时间(>600 s),表明其具有优异的防冰性能.
Slippery liquid-infused porous surface (SLIPS) is an emerging low-adhesion material that has found wide uses in anti-icing and anti-fouling. However
the poor adhesion of SLIPSs by top-down methods restricts the practical applications of SLIPSs. In the current research
we fabricated an epoxy-based SLIPS with excellent liquid-repellent and anti-icing properties. The porous epoxy resin substrate was primarily constructed by breath figure and then modified with polydimethylsiloxane (PDMS). Silicone oil was infiltrated within the substrate
serving as the lubricant layer. The hygroscopic polyamine cross-linker plays a crucial role in inducing water droplet nucleation. The surface pore size of the epoxy substrate grows from 4.09 μm to 5.09 μm while the porosity increases from 4.73% to 46.67% when the environmental humidity is elevated from (65±5)% to (95±5)%. The porous epoxy coatings attach robustly to a variety of metal substrates with an adhesion strength of around 2.2 MPa. After grafting PDMS
the pores were filled with the polymer
which could reserve silicone oil through polymer swelling and capillary sorption. The SLIPS prepared based on the epoxy substrate exhibits an extremely low water sliding angle of 2°
as well as excellent repellence to a variety of liquids including coffee
Chinese ink
milk and even high-viscous honey. On the other hand
the dynamic lubricant layer endows the coating with excellent anti-icing property owing to its low freezing temperature. The coating performs a much longer delay in freezing time (632 s) than those of the glass (21 s) and epoxy coating (94 s)
as well as ultralow ice adhesion strength of 1.75 kPa in contrast to the glass substrate (166.9 kPa) and epoxy coating (50.7 kPa)
indicating excellent anti-icing performance. The ice adhesion strength on our SLIPS is much smaller than those on commercial and some reported anti-icing coatings. Moreover
no obvious increase in ice adhesion strength can be observed after 20 times tests
displaying outstanding long-term anti-icing property.
呼吸图法环氧树脂超滑液体灌注涂层防冰
Breath figureEpoxy resinSlippery liquid infused porous surfaceAnti-icing
Jamil M I, Ali A, Haq F, Zhang Q, Zhan X, Chen F. Langmuir, 2018, 34(50): 15425-15444. doi:10.1021/acs.langmuir.8b03276http://dx.doi.org/10.1021/acs.langmuir.8b03276
Ignatyev D I, Khrabrov A N, Bazhenov S G. Aerosp Sci Technol, 2020, 104: 105914. doi:10.1016/j.ast.2020.105914http://dx.doi.org/10.1016/j.ast.2020.105914
Lv Jianyong(吕健勇), He Zhiyuan(贺志远), Wang Jianjun(王健君). Acta Polymerica Sinica(高分子学报), 2017, (12): 1870-1882. doi:10.11777/j.issn1000-3304.2017.17216http://dx.doi.org/10.11777/j.issn1000-3304.2017.17216
Cheng Shuman(程舒曼), Guo Pu(郭璞), Heng Liping(衡利苹). Acta Polymerica Sinica(高分子学报), 2020, 51(5):. doi:10.11777/j.issn1000-3304.2020.19226http://dx.doi.org/10.11777/j.issn1000-3304.2020.19226
530-547. doi:10.11777/j.issn1000-3304.2020.19226http://dx.doi.org/10.11777/j.issn1000-3304.2020.19226
Wong T S, Kang S H, Tang S K, Smythe E J, Aizenberg J. Nature, 2011, 477(7365): 443-447. doi:10.1038/nature10447http://dx.doi.org/10.1038/nature10447
Deng R, Shen T, Chen H, Lu J, Yang H C, Li W. J Mater Chem A, 2020, 8(16): 7536-7547. doi:10.1039/d0ta02000ahttp://dx.doi.org/10.1039/d0ta02000a
Solomon B R, Khalil K S, Varanasi K K. Langmuir, 2014, 30(36): 10970-10976. doi:10.1021/la5021143http://dx.doi.org/10.1021/la5021143
Bartolo D, Bouamrirene F, Verneuil É, Moulinet S. Europhys Lett, 2006, 74(2): 299-305. doi:10.1209/epl/i2005-10522-3http://dx.doi.org/10.1209/epl/i2005-10522-3
Yuan S, Li Z, Song L, Shi H, Luan S, Yin J. ACS Appl Mater Interfaces, 2016, 8(33): 21214-21220. doi:10.1021/acsami.6b06407http://dx.doi.org/10.1021/acsami.6b06407
Xu Y, Liu M. Surf Coat Technol, 2016, 307: 332-344. doi:10.1016/j.surfcoat.2016.08.091http://dx.doi.org/10.1016/j.surfcoat.2016.08.091
Sett S, Yan X, Barac G, Bolton L W, Miljkovic N. ACS Appl Mater Interfaces, 2017, 9(41): 36400-36408. doi:10.1021/acsami.7b10756http://dx.doi.org/10.1021/acsami.7b10756
Denq B, Hu Y, Chen L. J Appl Polym Sci, 1999, 74(1): 229-237. doi:10.1002/(sici)1097-4628(19991003)74:1<229::aid-app28>3.0.co;2-chttp://dx.doi.org/10.1002/(sici)1097-4628(19991003)74:1<229::aid-app28>3.0.co;2-c
Zhang A, Bai H, Li L. Chem Rev, 2015, 115(18): 9801-9868. doi:10.1021/acs.chemrev.5b00069http://dx.doi.org/10.1021/acs.chemrev.5b00069
Sun Wei(孙巍), Zhou Yuchen(周雨辰), Chen Zhongren(陈忠仁). Acta Polymerica Sinica(高分子学报), 2012, (12): 1459-1464. doi:10.3724/SP.J.1105.2012.12130http://dx.doi.org/10.3724/SP.J.1105.2012.12130
Ferrari E, Fabbri P, Pilati F. Langmuir, 2011, 27(5): 1874-1881. doi:10.1021/la104500jhttp://dx.doi.org/10.1021/la104500j
Zhu L W, Ou Y, Wan L S, Xu Z K. J Phys Chem B, 2014, 118(3): 845-854. doi:10.1021/jp4114392http://dx.doi.org/10.1021/jp4114392
Peng J, Han Y, Yang Y, Li B. Polymer, 2004, 45(2): 447-452. doi:10.1016/j.polymer.2003.11.019http://dx.doi.org/10.1016/j.polymer.2003.11.019
Bui V T, Ko S H, Choi H S. Chem Commun, 2014, 50(29): 3817-3819. doi:10.1039/c3cc48654khttp://dx.doi.org/10.1039/c3cc48654k
Liu X, Zhang X, Chen Q, Pan Y, Liu C, Shen C. Chem Eng J, 2021, 406: 126532. doi:10.1016/j.cej.2020.126532http://dx.doi.org/10.1016/j.cej.2020.126532
Sohbatzadeh F, Shabannejad A, Ghasemi M, Mahmoudsani Z. Prog Org Coat, 2021, 151: 106070. doi:10.1016/j.porgcoat.2020.106070http://dx.doi.org/10.1016/j.porgcoat.2020.106070
Liu K, Yao X, Jiang L. Chem Soc Rev, 2010, 39(8): 3240-3255. doi:10.1039/b917112fhttp://dx.doi.org/10.1039/b917112f
Li Jingye(李景烨), Wang Ziqiang(王自强), Yu Ming(虞鸣). Acta Polymerica Sinica(高分子学报), 2017, (2): 315-320. doi:10.11777/j.issn1000-3304.2017.16273http://dx.doi.org/10.11777/j.issn1000-3304.2017.16273
Liu Zhu(刘珠), Hong Peng(洪鹏), Xiang Hongping(向洪平), Huang Ziying(黄梓英), Luo Qinghong(罗青宏), Yang Xianjun(杨先君) and Liu Xiaoxuan(刘晓暄). Acta Polymerica Sinica(高分子学报), 2020, 51(6): 656-669. doi:10.11777/j.issn1000-3304.2019.19207http://dx.doi.org/10.11777/j.issn1000-3304.2019.19207
Golovin K, Kobaku S P R, Lee D. Sci Adv, 2016, 2(3): 2375-2548. doi:10.1126/sciadv.1501496http://dx.doi.org/10.1126/sciadv.1501496
Aghdam A S, Cebeci F C. Langmuir, 2020, 36(46): 14145-14154. doi:10.1021/acs.langmuir.0c02873http://dx.doi.org/10.1021/acs.langmuir.0c02873
Wang F, Ding W, He J. Chem Eng J, 2019, 360: 243-249. doi:10.1016/j.cej.2018.11.224http://dx.doi.org/10.1016/j.cej.2018.11.224
Zhang L, Guo Z, Sarma J. ACS Appl Mater Interfaces, 2020, 12(17): 20084-20095. doi:10.1021/acsami.0c02014http://dx.doi.org/10.1021/acsami.0c02014
Liu C, Li Y, Lu C. ACS Appl Mater Interfaces, 2020, 12(22): 25471-25477. doi:10.1021/acsami.0c05954http://dx.doi.org/10.1021/acsami.0c05954
Han G, Nguyen T B, Park S. ACS Nano, 2020, 14(8): 10198-10209. doi:10.1021/acsnano.0c03463http://dx.doi.org/10.1021/acsnano.0c03463
Wei C, Zhang G, Zhang Q. ACS Appl Mater Interfaces, 2016, 8(50): 34810-34819. doi:10.1021/acsami.6b09879http://dx.doi.org/10.1021/acsami.6b09879
0
浏览量
71
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构