浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
3.陕西延长中煤榆林能源化工有限公司 榆林 718500
E-mail: jydong@iccas.ac.cn
纸质出版日期:2021-11-20,
网络出版日期:2021-07-29,
收稿日期:2021-04-27,
扫 描 看 全 文
刘秀明,杜杰,霍金兰等.基于Ziegler-Natta催化剂和ω-烯烃基甲基二氯硅烷共聚-水解化学制备长链支化高密度聚乙烯[J].高分子学报,2021,52(11):1488-1497.
Liu Xiu-ming,Du Jie,Huo Jin-lan,et al.Synthesis of Long-chain-branched High-density Polyethylene with Ziegler-Natta Catalyst and ω-Alkenylmethyldichlorosilane Copolymerization-Hydrolysis Chemistry[J].ACTA POLYMERICA SINICA,2021,52(11):1488-1497.
刘秀明,杜杰,霍金兰等.基于Ziegler-Natta催化剂和ω-烯烃基甲基二氯硅烷共聚-水解化学制备长链支化高密度聚乙烯[J].高分子学报,2021,52(11):1488-1497. DOI: 10.11777/j.issn1000-3304.2021.21121.
Liu Xiu-ming,Du Jie,Huo Jin-lan,et al.Synthesis of Long-chain-branched High-density Polyethylene with Ziegler-Natta Catalyst and ω-Alkenylmethyldichlorosilane Copolymerization-Hydrolysis Chemistry[J].ACTA POLYMERICA SINICA,2021,52(11):1488-1497. DOI: 10.11777/j.issn1000-3304.2021.21121.
由Ziegler-Natta催化剂所制备的高密度聚乙烯(HDPE)不含有长链支化结构,导致其加工应用性能受限.如何在Ziegler-Natta催化剂所制备的HDPE中引入长链支化结构,是烯烃聚合研究面临的长期挑战之一. 本文报道通过
ω
-烯烃基甲基二氯硅烷共聚-水解化学,实现以Ziegler-Natta催化剂制备H型长链支化高密度聚乙烯(LCB-HDPE). 以5-己烯基甲基二氯硅烷作为长链支化助剂,首先在Ziegerl-Natta催化剂催化的乙烯聚合中实现其与乙烯共聚,在聚乙烯分子链侧基上引入反应性二氯硅烷基团;聚合反应结束后对聚合物进行水处理,使近邻聚合物链上的二氯硅烷基团发生水解缩合反应,即制备H型LCB-HDPE. 结果表明,Ziegler-Natta催化剂与
ω
-烯烃基甲基二氯硅烷共聚-水解化学的结合可实现LCB-HDPE的制备,长链支化密度可达0.15/1000C,而催化剂效率基本不受影响. 所合成的LCB-HDPE的熔体流变学响应明显,随长链支化密度增加,熔体弹性增大,零切黏度提高,熔体强度和拉伸应变强化效应不断增强. 同时,LCB-HDPE保持了高结晶性能,其熔点和结晶温度与线性聚乙烯相当,而结晶度有较大幅度提高.
High density polyethylene (HDPE) prepared by Ziegler-Natta catalyst does not contain long chain branching structure
which results in limits in its processing and applications. How to introduce long chain branching structure into HDPE prepared by Ziegler-Natta catalyst is one of the long-term challenges in olefin polymerization research. This study discusses a new synthesis of long-chain-branched high-density polyethylene(LCB-HDPE) based on Ziegler-Natta catalysis.
ω
-Alkenylmethyldichlorosilane was used as LCB reagent
which is introduced into ethylene polymerization to generate PE chains containing pendant reactive dichlorosilane groups by ethylene/5-hexenylmethyldichlorosilane copolymerization. Followed by treating the polymer powders with water
the neigboring polymer chains-grafted dichlorosilane groups are hydrolyzed and H-type LCB structure is formed by hydrolytic condensation. The results indicate that the combination of Ziegler-Natta catalysts and the
ω
‑alkenylmethyldichlorosilane copolymerization-hydrolysis chemistry resulted in successful preparation of LCB-HDPE with LCB density up to 0.15/1000C and hardly affected catalyst activity. The LCB-HDPEs have significant rheological properties responses. Their melt elasticity
zero-shear viscosity
melt strenght and strain-hardening effect all increase/intensify with the increase of LCB densities. Meanwhile
the LCB-HDPEs maintain high crystallization properties. With melting temperatures and crystallization temperatures being largely equivalent to those of linear PE
their crystallinities increased to a noticeable degree. It is expected that the new LCB-HDPEs with simultaneously high crystallinity and high melt strength will have good applications in the fields where the melt strength is highly required.
5-己烯基甲基二氯硅烷乙烯聚合Ziegler-Natta催化剂长链支化聚乙烯
5-HexenylmethyldichlorosilaneEthylene polymerizationZiegler-Natta catalystLong-chain-branched polyethylene
Stevens M P. Polymer Chemistry: An Introduction. New York: Oxford Press, 1999
Liu P W, Liu W F, Wang W J, Li B G, Zhu S P. Macromol React Eng, 2016, 10(3): 156-179. doi:10.1002/mren.201500053http://dx.doi.org/10.1002/mren.201500053
Li Wenle(李文乐), Li Zhenhao(李振昊), Li Huayi(李化毅), Hu Youliang(胡友良). Chin Polym Bull(高分子通报), 2011, 6(7): 37-43
Carella J M, Gotro J T, Graessley W W. Macromolecules, 1986, 19(3): 659-667. doi:10.1021/ma00157a031http://dx.doi.org/10.1021/ma00157a031
Hadjichristidis N, Xenidou M, Iatrou H, Pitsikalis M, Poulos Y, Avgeropoulos A, Sioula S, Paraskeva S, Velis G, Lohse D J, Schulz D N, Fetters L J, Wright P J, Mendelson R A, Garcia-Franco C A, Sun T, Ruff C J. Macromolecules, 2000, 33(7): 2424-2436. doi:10.1021/ma991670whttp://dx.doi.org/10.1021/ma991670w
Wang Hongying(王红英), Hu Xuteng(胡徐腾), Li Zhenyu(李振宇), Yi Jianjun(义建军), Dong Jinyong(董金勇). Prog Chem(化学进展), 2007, 19(6): 932-958. doi:10.3321/j.issn:1005-281X.2007.06.011http://dx.doi.org/10.3321/j.issn:1005-281X.2007.06.011
McDaniel M P, Rohlfing D C, Benham E A. Polym React Eng, 2003, 11(2): 101-132. doi:10.1081/pre-120021071http://dx.doi.org/10.1081/pre-120021071
Yang Q, Jensen M D, McDaniel M P. Macromolecules, 2010, 43(21): 8836-8852. doi:10.1021/ma101469jhttp://dx.doi.org/10.1021/ma101469j
Jensen M D, Yang Q, Yu Y, McDaniel M P. ACS Catal, 2018, 8(1): 725-737. doi:10.1021/acscatal.7b03267http://dx.doi.org/10.1021/acscatal.7b03267
Das C, Elguweri M, Jiang P, Kang S, Kelchtermans M, McLeish T C B, Parkinson M, Read D J, Redlich M P, Shirodkar P P, Soulages J M. Macromol React Eng, 2019, 13: 1800071. doi:10.1002/mren.201800071http://dx.doi.org/10.1002/mren.201800071
Liu Y, Qin Y W, Dong J Y. ACS Omega, 2021, 6: 675-679. doi:10.1021/acsomega.0c05211http://dx.doi.org/10.1021/acsomega.0c05211
Langston J, Dong J Y, Chung T C. Macromolecules, 2005, 38(14): 5849-5853. doi:10.1021/ma0506841http://dx.doi.org/10.1021/ma0506841
Zhang C H, Niu H, Dong J Y. Polym Bull, 2012, 68(4): 949-959. doi:10.1007/s00289-011-0588-7http://dx.doi.org/10.1007/s00289-011-0588-7
Liu Y, Qin Y W, Dong J Y. Ind Eng Chem Res, 2020, 59(26): 12038-12047. doi:10.1021/acs.iecr.0c02087http://dx.doi.org/10.1021/acs.iecr.0c02087
Zhang Zhijian(张志箭), Wang Li(王莉), Zu Fenghua(祖凤华), Hong Liuting(洪柳婷), Qin Yawei(秦亚伟), Dong Jinyong(董金勇). Acta Polymerica Sinica(高分子学报), 2020, 51(7): 744-753. doi:10.11777/j.issn1000-3304.2020.20017http://dx.doi.org/10.11777/j.issn1000-3304.2020.20017
Yang T T, Qin Y W, Dong J Y. Macromolecules, 2018, 51(22): 9234-9249. doi:10.1021/acs.macromol.8b01958http://dx.doi.org/10.1021/acs.macromol.8b01958
Zhou Hangsheng(周杭生), Li Kang(李康), Qin Yawei(秦亚伟), Dong Jinyong(董金勇). Acta Polymerica Sinica(高分子学报), 2019, 50(11): 1177-1186. doi:10.11777/j.issn1000-3304.2019.19078http://dx.doi.org/10.11777/j.issn1000-3304.2019.19078
Yin Xuemin(尹学敏), Qin Yawei(秦亚伟), Zhang Liyang(张丽洋), Ma Shuai(马帅), Dong Jinyong(董金勇). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 377-384. doi:10.11777/j.issn1000-3304.2019.19213http://dx.doi.org/10.11777/j.issn1000-3304.2019.19213
Li K, Zhou H, Qin Y, Zhao Y, Wang D J, Dong J Y. Polymer, 2020, 202: 122737. doi:10.1016/j.polymer.2020.122737http://dx.doi.org/10.1016/j.polymer.2020.122737
Li K, Qin Y, Zhao Y, Wang D J, Dong J Y. Ind Eng Chem Res, 2021, 60(12): 4589-4601. doi:10.1021/acs.iecr.1c00190http://dx.doi.org/10.1021/acs.iecr.1c00190
Liu W F, Liu P W, Wang W J, Li B G, Zhu S P. Macromol React Eng, 2016, 10(3): 180-200. doi:10.1002/mren.201500054http://dx.doi.org/10.1002/mren.201500054
0
浏览量
63
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构