浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学学院 长春 130012
E-mail: Sun_junqi@jlu.edu.cn
纸质出版日期:2021-08-20,
网络出版日期:2021-07-12,
收稿日期:2021-05-10,
修回日期:2021-06-03,
扫 描 看 全 文
王晓晗,李洋,孙俊奇.基于聚乙烯醇的高强度可修复超分子形状记忆塑料[J].高分子学报,2021,52(08):1043-1052.
Wang Xiao-han,Li Yang,Sun Jun-qi.Mechanically Robust and Healable Poly(vinyl alcohol)-based Shape Memory Supramolecular Plastics[J].ACTA POLYMERICA SINICA,2021,52(08):1043-1052.
王晓晗,李洋,孙俊奇.基于聚乙烯醇的高强度可修复超分子形状记忆塑料[J].高分子学报,2021,52(08):1043-1052. DOI: 10.11777/j.issn1000-3304.2021.21133.
Wang Xiao-han,Li Yang,Sun Jun-qi.Mechanically Robust and Healable Poly(vinyl alcohol)-based Shape Memory Supramolecular Plastics[J].ACTA POLYMERICA SINICA,2021,52(08):1043-1052. DOI: 10.11777/j.issn1000-3304.2021.21133.
理想的形状记忆材料不仅要具有优异的形状记忆效应,还要具有高的力学强度和对机械损伤与形状记忆疲劳的修复能力. 为制备安全可靠的形状记忆聚合物材料,本工作通过向聚乙烯醇(PVA)中引入带有吡啶基团的聚倍半硅氧烷(Py-POSS),制备了一种可修复形状记忆效应疲劳和机械损伤的高强度PVA基超分子形状记忆塑料. 得益于Py-POSS与PVA之间的氢键,PVA半结晶网络的稳定性得到提高,进而显著提高了超分子塑料的强度和形状记忆能力. 所制备的超分子塑料的屈服强度和模量分别可达~85.7 MPa和~6.0 GPa,形状记忆固定率和回复率都可达~99%. 基于氢键的动态性,超分子塑料可在水的辅助下完全修复形状记忆的疲劳,也可修复机械损伤,展现了超分子塑料形状记忆性能优异的安全性和稳定性.
The fabrication of shape memory polymers (SMPs) with robust mechanical properties
stable shape memory performance
and the capability to heal mechanical damage and fatigue of shape memory effect is highly desired but remains challenging. In this work
mechanically robust poly(vinyl alcohol) (PVA)-based shape memory supramolecular plastics capable of healing mechanical damage and fatigue of shape memory effect are fabricated by dispersing pyridine-functionalized polyhedral oligomeric silsesquioxane (Py-POSS) in PVA matrix. Due to the hydrogen bonds among PVA and Py-POSS
the stability of the physically cross-linked PVA network are effectively enhanced. The mechanical properties of the PVA/Py-POSS
x
supramolecular plastics
where
x
represents the weight ratio of Py-POSS to PVA
can be well-tailored by tailoring the mass ratio of the dispersed Py-POSS. The PVA/Py-POSS
2.7
exhibits the highest mechanical strength
with the tensile strength and storage modulus being ~85.7 MPa and ~6.0 GPa
respectively. Meanwhile
the PVA/Py-POSS
2.7
exhibits ultra-high shape memory effect with a shape recovery ratio (
R
r
) and shape fixing ratio (
R
f
) around ~99%. Due to the reversibility of hydrogen bonds
mobility of PVA chains can be greatly improved in the presence of water
which allows the PVA/Py-POSS
2.7
to heal the fatigued shape memory function. The total recovery ratio (
R
r
tot
) of the PVA/Py-POSS
2.7
is maintained above 93% after 90 folding/recovery cycles by conducting the healing step in a 90% RH environment after every 10 shape memory cycles. Based on the same mechanism
the mechanical damage on the PVA/Py-POSS
2.7
can also be fully healed with the assistance of water. The healed PVA/Py-POSS
2.7
exhibits the same shape memory function as the original sample does. The combination of ultra-high mechanical strength and healability enables the PVA/Py-POSS
2.7
to maintain its excellent shape memory performance during long time and repeated usage. Integrating nanofillers that have reversible interactions with polymer materials provide an effective avenue for fabricating high-performance SMPs with enhanced reliability and prolonged service time.
聚乙烯醇形状记忆聚合物自修复超分子塑料
Poly(vinyl alcohol)Shape memory polymersSelf-healingSupramolecular plastics
Miaudet P, Derre A, Maugey M, Zakri C, Piccione P M, Inoubli R, Poulin P. Science, 2007, 318(5854): 1294-1296. doi:10.1126/science.1145593http://dx.doi.org/10.1126/science.1145593
Zheng Ning(郑宁), Xie Tao(谢涛). Acta Polymerica Sinica(高分子学报), 2017, (11): 1715-1724. doi:10.11777/j.issn1000-3304.2017.17161http://dx.doi.org/10.11777/j.issn1000-3304.2017.17161
Behl M, Razzaq M Y, Lendlein A. Adv Mater, 2010, 22(31): 3388-3410. doi:10.1002/adma.200904447http://dx.doi.org/10.1002/adma.200904447
Lendlein A, Kelch S. Angew Chem Int Ed, 2002, 41(12): 2034-2057. doi:10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-mhttp://dx.doi.org/10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m
Kim W, Lim K, Kim W, Park E, Kim D. Prog Mater Sci, 2021, 118: 100756. doi:10.1016/j.pmatsci.2020.100756http://dx.doi.org/10.1016/j.pmatsci.2020.100756
Zaeem MA, Zhang N, Mamivand M, Comput Mater Sci, 2019, 160: 120-136. doi:10.1016/j.commatsci.2018.12.062http://dx.doi.org/10.1016/j.commatsci.2018.12.062
Huang Miaoming(黄淼铭), Dong Xia(董侠), Liu Weili(刘伟丽), Gao Xia(高霞), Wang Dujin(王笃金). Acta Polymerica Sinica(高分子学报), 2017, (4): 563-579. doi:10.11777/j.issn1000-3304.2017.16229http://dx.doi.org/10.11777/j.issn1000-3304.2017.16229
Xu J, Song J. Proc Natl Acad Sci USA, 2010, 107(17): 7652-7657. doi:10.1073/pnas.0912481107http://dx.doi.org/10.1073/pnas.0912481107
Bai Y, Zhang J, Chen X. ACS Appl Mater Interfaces, 2018, 10(16): 14017-14025. doi:10.1021/acsami.8b01425http://dx.doi.org/10.1021/acsami.8b01425
Li G, Yan Q, Xia H, Zhao Y. ACS Appl Mater Interfaces, 2015, 7(22): 12067-12073. doi:10.1021/acsami.5b02234http://dx.doi.org/10.1021/acsami.5b02234
Darabi M A, Khosrozadeh A, Wang Y, Ashammakhi N, Alem H, Erdem A, Chang Q, Xu K, Liu Y, Luo G, Khademhosseini A, Xing M. Adv Sci, 2020, 7(21): 1902740. doi:10.1002/advs.201902740http://dx.doi.org/10.1002/advs.201902740
Yang L, Wang Z, Fei G, Xia H. Macromol Rapid Commun, 2017, 38(23): 1700421. doi:10.1002/marc.201700421http://dx.doi.org/10.1002/marc.201700421
Yu K, Li H, McClung A J, Tandon G P, Baur J W, Qi H J. Soft Matter, 2016, 12(13): 3234-3245. doi:10.1039/c5sm02781khttp://dx.doi.org/10.1039/c5sm02781k
Fan X, Tan B H, Li Z, Loh X J. ACS Sustain Chem Eng, 2017, 5(11): 1217-1227
Yu K, Xie T, Leng J S, Ding Y F, Qi H J. Soft Matter, 2012, 8(20): 5687-5695. doi:10.1039/c2sm25292ahttp://dx.doi.org/10.1039/c2sm25292a
Müller W W, Pretsch T. Eur Polym J, 2010, 46(8): 1745-1758. doi:10.1016/j.eurpolymj.2010.05.004http://dx.doi.org/10.1016/j.eurpolymj.2010.05.004
Xiang Z, Zhang L, Yuan T, Li Y, Sun J. ACS Appl Mater Interfaces, 2018, 10(3): 2897-2906. doi:10.1021/acsami.7b14588http://dx.doi.org/10.1021/acsami.7b14588
Rodriguez E D, Luo X, Mather P T. ACS Appl Mater Interfaces, 2011, 3(2): 152-161. doi:10.1021/am101012chttp://dx.doi.org/10.1021/am101012c
Wang X, Li Y, Qian Y, Qi H, Li J, Sun J. Adv Mater, 2018, 30(36): 1803854. doi:10.1002/adma.201803854http://dx.doi.org/10.1002/adma.201803854
Wang X, Zhan S, Lu Z, Li J, Yang X, Qiao Y, Men Y, Sun J. Adv Mater, 2020, 32(50): 2005759. doi:10.1002/adma.202005759http://dx.doi.org/10.1002/adma.202005759
Heo Y, Sodano H A. Adv Funct Mater, 2014, 24(33): 5261-5268. doi:10.1002/adfm.201400299http://dx.doi.org/10.1002/adfm.201400299
Luo X F, Mather P T. ACS Macro Lett, 2013, 2(2): 152-156. doi:10.1021/mz400017xhttp://dx.doi.org/10.1021/mz400017x
Li Y, Chen S, Li X, Wu M, Sun J. ACS Nano, 2015, 9(10): 10055-10065. doi:10.1021/acsnano.5b03629http://dx.doi.org/10.1021/acsnano.5b03629
Williams G A, Ishige R, Cromwell O R, Chung J, Takahara A, Guan Z. Adv Mater, 2015, 27(26): 3934-3941. doi:10.1002/adma.201500927http://dx.doi.org/10.1002/adma.201500927
Zhu B, Jasinski N, Benitez A, Noack M, Park D, Goldmann A S, Barner-Kowollik C, Walther A. Angew Chem Int Ed, 2015, 54(30): 8653-8657. doi:10.1002/anie.201502323http://dx.doi.org/10.1002/anie.201502323
Zhan S, Wang X, Sun J. Macromol Rapid Commun, 2020, 41(24): 2000097. doi:10.1002/marc.202000097http://dx.doi.org/10.1002/marc.202000097
Miyamae K, Nakahata M, Takashima Y, Harada A. Angew Chem Int Ed, 2015, 54(31): 8984-8987. doi:10.1002/anie.201502957http://dx.doi.org/10.1002/anie.201502957
Habault D, Zhang H, Zhao Y. Chem Soc Rev, 2013, 42(17): 7244-7256. doi:10.1039/c3cs35489jhttp://dx.doi.org/10.1039/c3cs35489j
Huang W M, Ding Z, Wang C C , Wei J, Zhao Y, Purnawali H. Mater Today, 2010, 13(7-8): 54-61. doi:10.1016/s1369-7021(10)70128-0http://dx.doi.org/10.1016/s1369-7021(10)70128-0
Chen Y, Kushner A M, Williams G A, Guan Z. Nat Chem, 2012, 4(6): 467-472. doi:10.1038/nchem.1314http://dx.doi.org/10.1038/nchem.1314
Yanagisawa Y, Nan Y, Okuro K, Aida T. Science, 2018, 359(6371): 72-76. doi:10.1126/science.aam7588http://dx.doi.org/10.1126/science.aam7588
Agarwal P, Chopra M, Archer L A. Angew Chem Int Ed, 2011, 50(37): 8670-8673. doi:10.1002/anie.201103908http://dx.doi.org/10.1002/anie.201103908
Li J, Viveros J A, Wrue M H, Anthamatten M. Adv Mater, 2007, 19(19): 2851-2855. doi:10.1002/adma.200602260http://dx.doi.org/10.1002/adma.200602260
Zhang R, Guo X, Liu Y, Leng J. Compos Struct, 2014, 112(5): 226-230
Tang Z, Huang J, Guo B, Zhang L, Liu F. Macromolecules, 2016, 49(5): 1781-1789. doi:10.1021/acs.macromol.5b02756http://dx.doi.org/10.1021/acs.macromol.5b02756
Li B, Lu X, Ma Y, Chen Z. Eur Polym J, 2014, 60: 255-26. doi:10.1016/j.eurpolymj.2014.09.017http://dx.doi.org/10.1016/j.eurpolymj.2014.09.017
Ikkala O, Ruokolainen J, ten Brinke G, Torkkeli M, Serimaa R. Macromolecules, 1995, 28(21): 7088-7094. doi:10.1021/ma00125a009http://dx.doi.org/10.1021/ma00125a009
Xiao X, Qiu X, Kong D, Zhang W, Liu Y, Leng J. Soft Matter, 2016, 12(11): 2894-2900. doi:10.1039/c5sm02703ahttp://dx.doi.org/10.1039/c5sm02703a
0
浏览量
265
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构