浏览全部资源
扫码关注微信
厦门大学化学化工学院 厦门 361005
E-mail: wgweng@xmu.edu.cn
纸质出版日期:2021-09-20,
网络出版日期:2021-07-09,
收稿日期:2021-05-13,
扫 描 看 全 文
肖楠,于恒哲,高文莉等.基于螺噁嗪的快速可逆力响应性聚合物的研究[J].高分子学报,2021,52(09):1053-1057.
Xiao Nan,Yu Heng-zhe,Gao Wen-li,et al.Fast Reversible Mechano-responsive Polymers Based on Spirooxazine[J].ACTA POLYMERICA SINICA,2021,52(09):1053-1057.
肖楠,于恒哲,高文莉等.基于螺噁嗪的快速可逆力响应性聚合物的研究[J].高分子学报,2021,52(09):1053-1057. DOI: 10.11777/j.issn1000-3304.2021.21140.
Xiao Nan,Yu Heng-zhe,Gao Wen-li,et al.Fast Reversible Mechano-responsive Polymers Based on Spirooxazine[J].ACTA POLYMERICA SINICA,2021,52(09):1053-1057. DOI: 10.11777/j.issn1000-3304.2021.21140.
机械力响应性聚合物的设计目前引起国内外广泛的关注,但力致变色聚合物中的力色团的设计仍然是巨大的挑战. 本工作设计并合成了一种全新的螺噁嗪力色团结构,并将其引入以聚二甲基硅氧烷(PDMS)为基体的聚合成交联网络结构中. 通过对螺噁嗪小分子溶液和聚合物的紫外光照射验证了螺噁嗪力色团结构在紫外光刺激下的响应性以及快速恢复性;拉伸和循环拉伸实验来验证聚合物优异的力致变色行为;从CIE图则更加直观地看到聚合物在拉伸过程中由无色变为红色而撤掉机械力瞬间变为蓝色并在短暂时间内恢复为无色. 综上本文主要介绍了一种全新的力色团结构基于PDMS所制备出的柔性高分子材料,由于其优异的力致变色性能以及快速恢复性,在应力示警、柔性变色材料传感器方面都有一定的潜力.
The design of mechanoresponsive polymers has attracted great attention. However
the design of a new mechanochromophore for mechanochromism still remains a huge challenge in this field. This work reports the design and synthesis of a new spirooxazine mechanochromophore
which are introduced into PDMS polymer network. A color change from colorless to blue is first demonstrated by UV irradiation of a solution of small molecule spirooxazine and the polymer
and the UV induced color change can fully recover within seconds after the removal of UV light. This recovery is much faster than that of a similar spiropyran mechanochromophore
which takes tens of seconds to achieve decoloration. Uniaxial stretching experiments verify that the polymer can exhibit excellent mechanochromic behavior during the stretching process. CIE diagram shows that the polymer changes from colorless to purple red during the stretching process. When the mechanical force is removed
the polymer instantly turns into blue and returns to colorless within seconds. Cyclic loading-unloading experiments also show that the mechanochromism is robust and fully reversible. In summary
this article introduces a new mechanochromophore for the construction of crosslinked PDMS with both photochromism and mechanochromism. Due to its excellent mechanochromism and rapid recovery
the mechanochromic polymer shows great potential in stress sensing and flexible sensors.
响应性高分子力色团力致变色可逆
Responsive polymerMechanochromophoreMechanochromismReversible
Bertrand O, Gohy J F. Polym Chem, 2017, 8(1): 52-73. doi:10.1039/c6py01082bhttp://dx.doi.org/10.1039/c6py01082b
Sagara Y, Karman M, Verde Sesto E, Matsuo K, Kim Y, Tamaoki N, Weder C. J Am Chem Soc, 2018, 140(5): 1584-1587. doi:10.1021/jacs.7b12405http://dx.doi.org/10.1021/jacs.7b12405
Ishizuki K, Oka H, Aoki D, Goseki R, Otsuka H. Chem Eur J, 2018, 24(13): 3170-3173. doi:10.1002/chem.201800194http://dx.doi.org/10.1002/chem.201800194
Davis D A, Hamilton A, Yang J, Cremar L D, van Gough D, Potisek S L, Ong M T, Braun P V, Martinez T J, White S R, Moore J S, Sottos N R. Nature, 2009, 459(7243): 68-72. doi:10.1038/nature07970http://dx.doi.org/10.1038/nature07970
Ducrot E, Chen Y, Bulters M, Sijbesma R P, Creton C. Science, 2014, 344(6180): 186-189. doi:10.1126/science.1248494http://dx.doi.org/10.1126/science.1248494
Kean Z S, Hawk J L, Lin S, Zhao X, Sijbesma R P, Craig S L. Adv Mater, 2014, 26(34): 6013-6018. doi:10.1002/adma.201401570http://dx.doi.org/10.1002/adma.201401570
Chen Y, Spiering A J H, Karthikeyan S, Peters G W M, Meijer E W, Sijbesma R P. Nat Chem, 2012, 4(7): 559-562. doi:10.1038/nchem.1358http://dx.doi.org/10.1038/nchem.1358
Shi Z, Wu J, Song Q, Goestl R, Herrmann A. J Am Chem Soc, 2020, 142(34): 14725-14732. doi:10.1021/jacs.0c07077http://dx.doi.org/10.1021/jacs.0c07077
Huo S, Zhao P, Shi Z, Zou M, Yang X, Warszawik E, Loznik M, Gostl R, Herrmann A. Nat Chem, 2021, 13(2):131-139. doi:10.1038/s41557-020-00624-8http://dx.doi.org/10.1038/s41557-020-00624-8
Kung R, Pausch T, Rasch D, Gostl R, Schmidt B M. Angew Chem Int Ed, 2021, 60: 13626-13630. doi:10.1002/anie.202102383http://dx.doi.org/10.1002/anie.202102383
Hu X, Zeng T, Husic C C, Robb M J. J Am Chem Soc, 2019, 141(38): 15018-15023. doi:10.1021/jacs.9b08663http://dx.doi.org/10.1021/jacs.9b08663
Zhang Y, Wang Z, Kouznetsova T B, Sha Y, Xu E, Shannahan L, Fermen Coker M, Lin Y J, Tang C B, Craig S L. Nat Chem, 2021, 13(1): 56-62. doi:10.1038/s41557-020-00600-2http://dx.doi.org/10.1038/s41557-020-00600-2
Ghanem M A, Basu A, Behrou R, Boechler N, Boydston A J, Craig S L, Lin Y J, Lynde B E, Nelson A, Shen H, Storti D W. Nat Rev Mater, 2021, 6(1): 84-98. doi:10.1038/s41578-020-00249-whttp://dx.doi.org/10.1038/s41578-020-00249-w
Konopka M, Turansky R, Reichert J, Fuchs H, Marx D, Stich I. Phys Rev Lett, 2008, 100(11): 115503. doi:10.1103/physrevlett.100.115503http://dx.doi.org/10.1103/physrevlett.100.115503
Zhang H, Gao F, Cao X, Li Y, Xu Y, Weng W, Boulatov R. Angew Chem Int Ed, 2016, 55(9): 3040-3044. doi:10.1002/anie.201510171http://dx.doi.org/10.1002/anie.201510171
Zhang H, Chen Y, Lin Y, Fang X, Xu Y, Ruan Y, Weng W. Macromolecules, 2014, 47(19): 6783-6790. doi:10.1021/ma500760phttp://dx.doi.org/10.1021/ma500760p
Chen Y, Zhang H, Fang X, Lin Y, Xu Y, Weng W, Dai L Z. ACS Macro Lett, 2014, 3(2): 141-145. doi:10.1021/mz400600rhttp://dx.doi.org/10.1021/mz400600r
Jiang S, Zhang L, Xie T, Lin Y, Zhang H, Xu Y, Weng W, Xia H. ACS Macro Lett, 2013, 2(8): 705-709. doi:10.1021/mz400198nhttp://dx.doi.org/10.1021/mz400198n
Hong G, Zhang H, Lin Y, Chen Y, Xu Y, Weng W, Xia H. Macromolecules, 2013, 46(21): 8649-8656. doi:10.1021/ma4017532http://dx.doi.org/10.1021/ma4017532
Fang X, Zhang H, Chen Y, Lin Y, Xu Y, Weng W. Macromolecules, 2013, 46(16): 6566-6574. doi:10.1021/ma4014862http://dx.doi.org/10.1021/ma4014862
Chibisov A K, Gorner H. J Phys Chem A, 1997, 101(24): 4305-4312. doi:10.1021/jp962569lhttp://dx.doi.org/10.1021/jp962569l
Gorner H. Phys Chem Chem Phys, 2001, 3(3): 416-423. doi:10.1039/b007708ihttp://dx.doi.org/10.1039/b007708i
Gao Y J, Ota H, Schaler E W, Chen K, Zhao A, Gao W, Fahad H M, Leng Y G, Zheng A Z, Xiong F R, Zhang C C, Tai L C, Zhao P D, Fearing R S, Javey A. Adv Mater, 2017, 29(39): 1701985. doi:10.1002/adma.201701985http://dx.doi.org/10.1002/adma.201701985
Li C H, Wang C, Keplinger C, Zuo J L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X Z, Bao Z N. Nat Chem, 2016, 8(6): 618-624. doi:10.1038/nchem.2492http://dx.doi.org/10.1038/nchem.2492
Lai J C, Jia X Y, Wang D P, Deng Y B, Zheng P, Li C H, Zuo J L, Bao Z N. Nat Commun, 2019, 10: 1164. doi:10.1038/s41467-019-09130-zhttp://dx.doi.org/10.1038/s41467-019-09130-z
Wolf M P, Salieb Beugelaar G B, Hunziker P. Prog Polym Sci, 2018, (83): 97-134. doi:10.1016/j.progpolymsci.2018.06.001http://dx.doi.org/10.1016/j.progpolymsci.2018.06.001
Gossweiler G R, Hewage G B, Soriano G, Wang Q M, Welshofer G W, Zhao X H, Craig S L. ACS Macro Lett, 2014, 3(3): 216-219. doi:10.1021/mz500031qhttp://dx.doi.org/10.1021/mz500031q
0
浏览量
112
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构