Fig. 1 Optical micrograph showing the generation of O/W microdroplets using a flow-focusing microfluidic device.
纸质出版日期:2021-12-20,
网络出版日期:2021-09-08,
收稿日期:2021-05-18,
修回日期:2021-06-26
扫 描 看 全 文
引用本文
阅读全文PDF
我们近期报道了两亲性嵌段共聚物刷(聚降冰片烯-g-聚苯乙烯)-b-(聚降冰片烯-g-聚环氧乙烷)(PS-b-PEO)诱导的“有序自发乳化机制”,简便地制备了多孔结构色微球. 在此基础上,本工作中设计合成了含聚丙烯酸叔丁酯(PtBA)中间嵌段的三嵌段共聚物刷,探究其对界面自组装行为的影响规律. 实验结果表明,PtBA嵌段会使水-油界面过渡层厚度增加,而显著影响聚合物刷在W/O界面上的排列方式. 此外,PtBA可在酸性条件下水解生成聚丙烯酸(PAA),与有机碱作用后成盐,使孔内壁亲水性增加、微球体积膨胀、结构色红移,从而制备出刺激响应性结构色微球.
Our recent work showed that amphiphilic bottlebrush block copolymer (polynorbornene-graft-polystyrene)-block-(polynorbornene-graft-poly(ethylene oxide)) (PS-b-PEO) could induce organized spontaneous emulsification, yielding structural colored porous microspheres templated by ordered water-in-oil-in-water (W/O/W) double emulsion droplets. Herein, we demonstrate the design and synthesis of a series of triblock copolymers with a poly(tert-butylacrylate) (PtBA) block between PS and PEO blocks, and disclose the influence of the middle block on interfacial self-assembly. It turned out that the transition layer at W/O interface becomes thicker in the presence of PtBA block, leading to great influence on packing parameters of the bottlebrush amphiphiles. Even though decreased ordering of nanopore arrays is observed relative to that of diblock copolymers, the middle block enables the wide tuning of reflection across the whole visible spectrum (471-717 nm) simply through variation of droplet evaporation time. Moreover, stimuli-responsive structural colored microspheres are obtained via hydrolysis of PtBA to poly(acrylic acid) (PAA) which can react with organic bases and form organic salts, leading to enhanced hydrophilicity of the microspheres, swelling of the photonic structure, and red-shift of structural color. A large increase of reflection maximum of up to 50 nm is achieved in the presence of arginine at a low concentration of 10-3 mol/L. Such a color change can be completed within 4 min, providing an effective method for fast and sensitive detection. This work not only provides useful fundamental knowledge regarding the interfacial self-assembly of triblock copolymers, but also demonstrates an effective strategy for making stimuli-responsive photonic structures.
Porous microspheres with stimuli-responsive structural colors are prepared through introducing a middle block of poly(tertbutylacrylate) and further hydrolyzed into a layer of poly(acrylic acid). The photonic microspheres are obtained simply via the interfacial self-assembly of triblock bottlebrushes within ordered water-in-oil-in-water double emulsions.
响应性结构色材料在温度、湿度、pH、电场、磁场、光或机械力等外界刺激下,材料结构色会发生相应的变化[
传统的响应性多孔结构色微球主要是通过模板法制备. 通过胶体粒子限域自组装得到三维蛋白石结构,在结构间隙填充聚合单体或可交联聚合物前体. 单体聚合或聚合物前体交联固化,通过溶剂溶解、煅烧或强酸刻蚀等方式移除胶体粒子而得到反蛋白石微球[
我们课题组近期研究表明,当两亲性嵌段共聚物刷如(聚降冰片烯-g-聚苯乙烯)-b-(聚降冰片烯-g-聚环氧乙烷)(PS-b-PEO)的甲苯乳液滴分散于水中时,随着甲苯挥发,体系通过“有序自发乳化”机制能产生热力学稳定且排列有序的水包油包水(W/O/W)双乳液[
三代Grubbs催化剂(98%)、外型-5-降冰片烯酸(98%)、外型降冰片烯酸酐(98%)、聚乙烯醇(PVA,Mw=13~23 kDa)以及聚乙二醇单甲醚(Mn=4 kDa)从Sigma-Aldrich购买,使用前未经过纯化处理. 乙烯基乙醚(99%)、 溴化亚铜(98%)和6-氨基己酸(98%)购于Acros,使用前未经纯化处理. N,N,N',N'',N'''-五甲基二乙基三胺(PMDETA,98%)、乙基-2-溴异丁酸酯(98%)、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC·HCl,99%)、4-二甲基氨基吡啶(DMAP,99%)、丙炔胺(99%)从百灵威科技有限公司购买,使用前未经过纯化处理. 苯乙烯(99%)和丙烯酸叔丁酯(98%)从百灵威科技有限公司购买,使用前过碱性氧化铝柱. 精氨酸(99%)、赖氨酸(99%)、组氨酸(99%)、甘氨酸(99%)和谷氨酸(99%)从天津希恩斯生化科技有限公司购买,使用前未经过纯化处理.
核磁共振波谱(NMR):实验中涉及的1H-NMR图谱由400 MHz Bruker Advance DPX-400型核磁共振仪在常温下测定,通常选择氘代氯仿作为溶剂,TMS作为内标.
凝胶渗透色谱(GPC):实验中合成的大分子单体的数均分子量(Mn)、重均分子量(Mw)以及分子量分布指数(PDI)由带单示差检测器的Agilent PL-GPC 50表征测定. 内部串联2根型号为PL-gel MIXED-B 300×7.5 mm柱子,测定温度40 ℃,四氢呋喃(THF)作为流动相,流速1.0 mL/min,采用Easi-Cal PS-1作为内标. 聚合物刷的数均和重均分子量以及分子量分布指数由带DAWN HELEOS多角度光散射(MALS)检测器的GPC表征测定. 内部串联2根型号为PLgel MIXED-B 300×7.5 mm柱子,THF为流动相,测定温度40 ℃,流速1.0 mL/min. 假定示差信号中100%质量流出来计算dn/dc值. 通过得到的dn/dc值分析光散射信号,计算得到绝对分子量.
显微照片和反射光谱:实验中涉及的结构色微球光学显微照片由一台配有CCD相机的Olympus显微镜拍摄得到,且以Olympus TH4-200卤素灯作为光源. 反射光谱数据由Nova光谱仪收集,测量波长范围为330~910 nm,狭缝宽度为200 μm. 采用的光纤型号为FIB-M-200-NIR,内径200 μm,且以标准白板(ideaoptics,STD-WS)作为100%反射进行标定. 每个样品的平均最大反射波长是通过统计20个微球,计算其平均值得到. 水解微球对氨基酸的响应性变化数据是通过重复10次实验,统计其平均值得到的. 数据分析时去掉10个数据点中的最大值和最小值,再进行平均值和标准差计算.
扫描电子显微镜(SEM):实验中拍摄的SEM照片是由Hitachi S-4800型扫描电子显微镜拍摄,操作电压为5 kV,工作距离为8.0 mm. 断面形貌是将样品滴在导电胶上,干态下用手术刀在显微镜下进行切球制样. 样品测试前进行一段时间的喷金处理.
傅里叶变换红外光谱:实验中涉及的红外吸收光谱图由Shimadzu IRTracer-100红外光谱仪测定. 通过聚合物与KBr共同研磨压片的方式制样,测试时采用透射模式.
界面张力测试:界面张力由Theta光学张力仪(Biolin Scientific)测定,采用悬浮液滴的方法,液滴体积10 μL,通过One Attention软件进行液滴形状分析.
3种大分子单体即降冰片烯-g-聚苯乙烯(NB-PS,Mn=5270 Da,PDI=1.12)、降冰片烯-g-聚丙烯酸叔丁酯(NB-PtBA,Mn=7600,PDI=1.12)和降冰片烯-g-聚环氧乙烷(NB-PEO,Mn=4120,PDI=1.05)的合成方法可参考文献[
利用微流控技术制备尺寸均一的水包油O/W乳液滴. 如
Fig. 1 Optical micrograph showing the generation of O/W microdroplets using a flow-focusing microfluidic device.
微球内表面PtBA的水解:取1 mL约含有3 mg聚合物刷的结构色微球分散液于20 mL样品瓶中,向样品瓶中加入4 mL质量分数36%的浓盐酸,用螺纹塑料盖拧紧瓶口,样品瓶放置通风橱中静置4天. 每间隔6 h,轻摇样品瓶1 min. 酯水解结束后,结构色微球用超纯水洗5遍,确保过量的盐酸完全除去. 最后将得到的水解后结构色微球保存在超纯水中,进行后续实验. 通过红外吸收光谱表征微球是否成功水解. 水解前微球中1365和1395 cm-1两处振动吸收峰归属于叔丁基上甲基C―H键的弯曲振动、1145和1030 cm-1两处振动吸收峰归属于与羰基和叔丁基相连的C―O―C键伸缩振动峰,同时1729 cm-1处的伸缩振动峰归属为叔丁酯羰基的伸缩振动峰. 在水解后的微球中,前2个官能团的特征峰几乎完全消失;同时,羰基特征峰从水解前1729 cm-1处迁移到1720 cm-1. 因而,红外结果表明微球内壁叔丁基在盐酸作用下发生了水解.
通过在聚合反应中原位取样后,对样品进行NMR和GPC测试来检测每种大单体反应情况,确认三嵌段共聚物刷的合成. 如
Fig. 2 1H-NMR spectra of NB-PS macromonomer, PS bottlebrush homopolymer, diblock and triblock copolymers in CDCl3.
Fig. 3 (a) GPC-RI and (b) GPC-MALS curves of bottlebrush polymers: PS bottlebrush, Mw=7.42×104 Da, PDI=1.07; PS-b-PtBA diblock copolymer, Mw=1.67×105 Da, PDI=1.07; PS-b-PtBA-b-PEO triblock copolymer, Mw=3.25×105 Da, PDI=1.10.
在第一单体反应完全后,向反应体系中加入第二单体继续反应生成第二嵌段PtBA,核磁氢谱中δ=6.28处归属于NB-PtBA降冰片烯双键氢的核磁共振峰完全消失,表明单体反应完全. 产物GPC曲线同样呈现一个对称单峰,且相比于第一嵌段均聚物刷流出时间更短,即获得了更大的分子量(1.67×105 Da versus 7.42×104 Da),同时PDI仍维持在1.07,表明第二嵌段已合成. 以此类推,NMR和GPC同样证明了三嵌共聚物刷的合成. 在此基础上,我们通过改变单体与催化剂的摩尔比,制备了一系列不同聚合度的三嵌段共聚物刷样品(见
Sample a | [C]:[PS]:[PtBA]:[PEO] b | Mn,theo. c ×10-5 (Da) | Mw,cal. d ×10-5 (Da) | PDI d |
---|---|---|---|---|
TBCP-60 | 1:15:15:30 | 3.17 | 3.06 | 1.05 |
TBCP-65 e | 1:16:16:33 | 3.79 | 3.44 | 1.06 |
TBCP-68 | 1:17:17:34 | 3.79 | 3.53 | 1.06 |
TBCP-76 | 1:19:19:38 | 4.22 | 4.01 | 1.07 |
TBCP-84 | 1:21:21:42 | 4.22 | 4.54 | 1.07 |
TBCP-104 | 1:26:26:52 | 5.27 | 5.50 | 1.08 |
DBCP-90 f | 1:45:45 | 3.94 | 4.23 | 1.07 |
DBCP-100 f | 1:50:50 | 4.89 | 4.70 | 1.08 |
DBCP-344 g | 1:172:172 | 22.8 | 20.3 | 1.30 |
a TBCP-DP referring to TBCP with a total DP as calculated based on MWs obtained using GPC. b The DP ratio among PS, PtBA and PEO determined by MW and 1H-NMR. c Theoretical MW calculated according to molar ratio of macromonomers versus 3rd generation Grubbs catalyst. d Weight average molecular weight (Mw) and polydispersity index (PDI) obtained from GPC-MALS. e PtBA-b-PS-b-PEO bottlebrush copolymer. f PS-b-PEO bottlebrush copolymer. g PtBA-b-PEO bottlebrush copolymer.
首先探究了甲苯挥发时间对三嵌段共聚物刷乳液界面组装行为的影响,并选择分子量相近的两嵌段共聚物刷PS-b-PEO进行对比. 如
Fig. 4 (a) Reflective optical micrographs and (b) normalized reflection spectra of TBCP-84 microspheres produced via solvent evaporation for different time duration (3-20 h). (c) Reflection maximum (λmax) as a function of evaporation time (t). (d) Reflection spectra of DBCP-90 microspheres produced via solvent evaporation for different time duration (3-60 h). (e) Reflection maximum (λmax) as a function of evaporation time (t). The well-fitted curve can be described as λmax = 615.15 -155.25exp(-0.059t).
如
Fig. 5 (a) Reflection spectra of microspheres prepared with different bottlebrush copolymers via solvent evaporation for 15 h. (b) Interfacial tension of W/O interface as measured by making a pendant droplet of PVA aqueous solution (2.00 wt%) within toluene or solutions containing different bottlebrush block copolymers (1.15 wt%).
我们通过界面张力测试来揭示不同嵌段共聚物刷油水界面吸附行为的差异. 如
我们进一步用扫描电子显微镜SEM表征了不同样品的断面,对比了三嵌段和两嵌段共聚物刷微球结构形貌. 如
Fig. 6 (a) Illustration of the difference in molecular packing parameters between DBCP-100 diblock and TBCP-84 triblock copolymers. (b) and (c) Cross-sectional SEM micrographs and pore size analyses (inset histogram) of TBCP-84 and DBCP-100 microspheres with average pore diameters of (244±19) nm and (221±25) nm, respectively. (d) and (e) Surface SEM micrographs of TBCP-84 and DBCP-100. (f) and (g) SEM micrographs of TBCP-84 and DBCP-100 showing a spherical shape of the microsphere.
此外,微球表面也是多孔结构,然而由于PVA堵塞了部分孔,使表面孔密度相比于断面有所降低. 与两嵌段微球表面圆形孔形成鲜明对比,三嵌段微球表面孔形状不规则,这也说明中间嵌段的引入影响了嵌段共聚物刷在界面的排列(
为了得到响应性结构色微球,将PS-b-PtBA-b-PEO三嵌段共聚物刷乳液组装得到的结构色微球在盐酸作用下进行叔丁酯水解(见实验部分),在微球内表面引入了聚丙烯酸(PAA)层,此种微球标记为TBCP-DP-hy. 如
Fig. 7 (a) Normalized reflection spectra of TBCP-68 microspheres before and after hydrolysis. (b) Reflection maximums before and after hydrolysis.
我们研究了TBCP-68-hy微球对不同等电点氨基酸的响应性规律. 首先探究了结构色微球对精氨酸的响应动力学. 如
Fig. 8 (a) Reflective optical micrographs and (b) reflection spectra of individual microspheres after interaction with Arg (0.01 mol/L) for different time durations. (c) The variation of Δλt/Δλmax as a function of time (t). (d) The variation of reflection maximum (Δλmax) under different concentrations of Arg solutions. (e) The variation of reflection maximum (Δλmax) in the presence of amino acid with different isoelectric points (PI) (0.01 mol/L).
进一步研究了不同聚合物微球对精氨酸的响应性变化规律. 如
Fig. 9 (a) Reflective optical micrographs of individual microspheres before and after interaction with Arg (0.1 mo/L). (b) The variation of microsphere volume (ΔV/V0) as a function of DP.
设计合成了一系列两亲性三嵌段共聚物刷PS-b-PtBA-b-PEO,揭示了中间PtBA嵌段的引入对其界面组装行为的影响规律,进一步通过PtBA的水解获得了响应性光子微球材料. 研究表明PtBA会导致水-油过渡层厚度增加,而影响聚合物刷在W/O界面上的排列方式:一方面,三嵌段共聚物刷微球孔径均一性和结构有序性相比于两嵌段共聚刷有所降低;另一方面,通过改变样品制备条件能实现结构色在全可见光区连续宽范围调节. 水解后的多孔微球内表面含有PAA层,能与碱性氨基酸反应形成羧酸盐,引起光子微球的体积膨胀,结构尺寸变大,结构色显著红移. 此种光子微球响应速度快,灵敏度高,有望作为光学传感材料用于检测. 总之,本工作首次揭示了三嵌段共聚物刷的界面组装行为,同时也为响应性结构色微球的简单制备提供了一种新的设计思路.
Ge J, Yin Y. Angew Chem Int Ed, 2011, 50: 1492-1522. doi:10.1002/anie.200907091 [百度学术]
Wang Libin(王利彬), Wang Jingxia(王京霞), Song Yanlin(宋延林). Acta Polymerica Sinica(高分子学报), 2012, (10): 1118-1127. doi:10.3724/sp.j.1105.2012.12133 [百度学术]
Yu Z, Wang C F, Ling L, Chen L, Chen S. Angew Chem Int Ed, 2012, 51: 2375-2378. doi:10.1002/anie.201107126 [百度学术]
Liu Chenhui(刘晨辉), Liu Genqi(刘根起), Ren Chenrui(任宸锐), Shi Hongkai(史红凯), Xue Ke(薛珂), Cao Yunlei(曹云雷), Li Huanhuan(李欢欢), Liu Jianxun(刘建勋). Acta Polymerica Sinica(高分子学报), 2020, (7): 762-770. doi:10.11777/j.issn1000-3304.2020.20030 [百度学术]
Wang J X, Wang L B, Song Y L, Jiang L. J Mater Chem C, 2013, 1: 6048-6058. doi:10.1039/c3tc30728j [百度学术]
Heo Y, Kang H, Lee J S, Oh Y K, Kim S H. Small, 2016, 12: 3819-3826. doi:10.1002/smll.201601140 [百度学术]
Nam H, Song K, Ha D, Kim T. Sci Rep, 2016, 6: 30885-30893. doi:10.1038/srep30885 [百度学术]
Qin L, Liu X, He K, Yu G, Yuan H, Xu M, Li F, Yu Y. Nat Commun, 2021, 12: 699-707. doi:10.1038/s41467-021-20908-y [百度学术]
Zhang J, Yang S, Tian Y, Wang C F, Chen S. Chem Commun, 2015, 51: 10528-10531. doi:10.1039/c5cc03363b [百度学术]
Liu Q J, Li Y L, Xu J C, Lu H F, Li Y S, Song D P. ACS Nano, 2021, 15: 5534-5544. doi:10.1021/acsnano.1c00361 [百度学术]
Qin J, Li X, Cao L, Du S, Wang W, Yao S Q. J Am Chem Soc, 2019, 142: 417-423. doi:10.1021/jacs.9b11116 [百度学术]
Liu Shirong(刘士荣), Qin Liyan(秦立彦), Zhang Xiaodong(张晓栋), Chen Mingqing(陈明清). Chem J Chinese University(高等学校化学学报), 2017, (11): 1993-1998. doi:10.7503/cjcu20170519 [百度学术]
Xia Y, Na X, Wu J, Ma G. Adv Mater, 2019, 31: 1801159-1801176. doi:10.1002/adma.201801159 [百度学术]
Fan J B, Huang C, Jiang L, Wang S. J Mater Chem B, 2013, 1: 2222-2235. doi:10.1039/c3tb00021d [百度学术]
Gokmen M T, Du P F E. Prog Polym Sci, 2012, 37: 365-405. doi:10.1016/j.progpolymsci.2011.07.006 [百度学术]
Zhou M, Bao J, Xu Y, Zhang J J, Xie J F, Guan M L, Wang C L, Wen L Y, Lei Y, Xie Y. ACS Nano, 2014, 8: 7088-7098. doi:10.1021/nn501996a [百度学术]
Tang Y, Zhang Y, Li W, Ma B, Chen X. Chem Soc Rev, 2015, 44: 5926-5940. doi:10.1039/c4cs00442f [百度学术]
Burgess I B, Koay N, Raymond K P, Kolle M, Loncar M, Aizenberg J. ACS Nano, 2012, 6: 1427-1437. doi:10.1021/nn204220c [百度学术]
Bai L, Xie Z Y, Wang W, Yuan C W, Zhao Y J, Mu Z D, Zhong Q F, Gu Z Z. ACS Nano, 2014, 8: 11094-11100. doi:10.1021/nn504659p [百度学术]
Zhang Y Q, Qiu J H, Gao M M, Li P, Gao L J, Heng L P, Tang B Z, Jiang L. J Mater Chem C, 2014, 2: 8865-8872. doi:10.1039/c4tc00147h [百度学术]
Vasquez Y, Kolle M, Mishchenko L, Hatton B D, Aizenberg J. ACS Photonics, 2013, 1: 53-60. doi:10.1021/ph400067z [百度学术]
Zhang B, Cheng Y, Wang H, Ye B F, Shang L R, Zhao Y J, Gu Z Z. Nanoscale, 2015, 7: 10590-10594. doi:10.1039/c5nr02324f [百度学术]
Cui J C, Zhu W, Gao N, Li J, Yang H W, Jiang Y, Seidel P, Ravoo B J, Li G T. Angew Chem Int Ed, 2014, 53: 3844-3848. doi:10.1002/anie.201308959 [百度学术]
Wang Qiuhong(王秋鸿), Xue Min(薛敏), Wang Fengyan(王丰彦), Yan Zequn(阎泽群), Xue Fei(薛飞), Chen Wei(陈伟), Qi Fenglian(齐丰莲), Meng Zihui(孟子晖), Xu Zhibin(徐志斌), Chem J Chinese University(高等学校化学学报), 2014, (11): 2297-2302. doi:10.3969/j.issn.1006-6713.2020.07.020 [百度学术]
Chen X, Yang X, Song D P, Men Y F, Li Y S. Macromolecules, 2021, 54: 3668-3677. doi:10.1021/acs.macromol.1c00198 [百度学术]
Zhu J, Hayward R C. Angew Chem Int Ed, 2008, 47: 2113-2116. doi:10.1002/anie.200704863 [百度学术]
Hong M, Liu J Y, Li B X, Li Y S. Macromolecules, 2011, 44: 5659-5665. doi:10.1021/ma2010537 [百度学术]
Nguyen H V, Gallagher N M, Vohidov F, Jiang Y, Kawamoto K, Zhang H, Park J V, Huang Z, Ottaviani M F, Rajca A, Johnson J A. ACS Macro Lett, 2018, 7: 472-476. doi:10.1021/acsmacrolett.8b00201 [百度学术]
Gao H F, Matyjaszewski K. J Am Chem Soc, 2007, 129: 6633-6639. doi:10.1021/ja0711617 [百度学术]
Song D P, Li C, Colella N S, Xie W, Li S, Lu X, Gido S, Lee J H, Watkins J J. J Am Chem Soc, 2015, 137: 12510-12513. doi:10.1021/jacs.5b08632 [百度学术]
Song D P, Li C, Li W H, Watkins J J. ACS Nano, 2016, 10: 1216-1223. doi:10.1021/acsnano.5b06525 [百度学术]
Lutz J F, Matyjaszewski K. Chem Phys, 2002, 203: 1385-1395. doi:10.1002/1521-3935(200207)203:10/11<1385::aid-macp1385>3.0.co;2-x [百度学术]
Lutz J F, Matyjaszewski K. J Polym Sci, Part A: Polym Chem, 2005, 43: 897-910. doi:10.1002/pola.20548 [百度学术]
Li Y L, Chen X, Geng H K, Dong Y, Wang B, Ma Z, Pan L, Ma G Q, Song D P, Li Y S. Angew Chem Int Ed, 2021, 60: 3647-3653. doi:10.1002/anie.202011702 [百度学术]
Liberman-Martin A L, Chu C K, Grubbs R H. Macromol Rapid Commun, 2017, 38: 1700058-1700072. doi:10.1002/marc.201700058 [百度学术]
Magkiriadou S, Park J G, Kim Y S, Manoharan V N. Phys Rev E, 2014, 90: 062302. doi:10.1103/physreve.90.062302 [百度学术]
Koay N, Burgess I B, Kay T M, Nerger B A, Miles-Rossouw M, Shirman T, Vu T L, England G, Phillips K R, Utech S, Vogel N, Kolle M, Aizenberg J. Opt Express, 2014, 22: 27750-27768. doi:10.1364/oe.22.027750 [百度学术]
Park J G, Kim S H, Magkiriadou S, Choi T M, Kim Y S, Manoharan V N. Angew Chem Int Ed, 2014, 53: 2899-2903. doi:10.1002/anie.201309306 [百度学术]
1301
浏览量
722
下载量
5
CSCD
相关文章
相关作者
相关机构