浏览全部资源
扫码关注微信
1.聚合物复合材料及功能材料教育部重点实验室 中山大学材料科学与工程学院 广州 510006
2.中国石油石油化工研究院 大庆化工研究中心 大庆 163714
E-mail: gaohy@mail.sysu.edu.cn
纸质出版日期:2021-12-20,
网络出版日期:2021-07-22,
收稿日期:2021-05-18,
扫 描 看 全 文
阮晶晶,郑涵斗,蒋岩等.α-二亚胺镍钯配合物合成及催化混合癸烯低聚研究[J].高分子学报,2021,52(12):1603-1610.
Ruan Jing-jing,Zheng Han-dou,Jiang Yan,et al.Synthesis and Catalytic Performance of α-Diimine Nickel and Palladium Complexes for Oligomerization of Decene Mixture[J].ACTA POLYMERICA SINICA,2021,52(12):1603-1610.
阮晶晶,郑涵斗,蒋岩等.α-二亚胺镍钯配合物合成及催化混合癸烯低聚研究[J].高分子学报,2021,52(12):1603-1610. DOI: 10.11777/j.issn1000-3304.2021.21147.
Ruan Jing-jing,Zheng Han-dou,Jiang Yan,et al.Synthesis and Catalytic Performance of α-Diimine Nickel and Palladium Complexes for Oligomerization of Decene Mixture[J].ACTA POLYMERICA SINICA,2021,52(12):1603-1610. DOI: 10.11777/j.issn1000-3304.2021.21147.
α
-二亚胺镍钯催化剂具有独特的链行走的特点,通过对催化剂结构设计可以进一步调控其催化性能和链行走过程来制备性能优异的聚烯烃产品. 本文合成和表征了莰基骨架的
α
-二亚胺镍钯配合物,并研究了其在一氯二乙基铝的助催化作用下催化混合癸烯低聚性能. 详细探究了催化剂金属中心、溶剂、温度及铝镍比对混合癸烯低聚结果的影响. 钯催化剂催化混合癸烯低聚时几乎无活性;而镍催化剂具有较好的催化活性,结合单体的异构化过程线性的单体几乎能完全低聚转化. 所得到的产物是高度支化、低分子量的油状聚烯烃产物,并且具有高的黏度指数(
>
170),低的倾点(
<
-30 ℃),在润滑油基础油领域具有良好应用前景.
α
-Diimine nickel and palladium catalysts catalyze olefins polymerization to form branched products because of unique chain walking characteristics. Design and optimization of catalyst ligand structure can control its catalytic properties and chain walking process
thereby developing high-performance polyolefins. In this paper
new
α
-diimine nickel and palladium complexes with a rigid camphyl backbone were designed and synthesized for oligomerization of decene mixture. X-ray single crystal diffraction patterns of nickel (
Ni-1
) and palladium (
Pd-1
) complexes clearly proved molecular structure of nickel and palladium complexes. The buried volume of nickel and palladium complexes calculated by single crystal structure data supported the bulky steric effect of the camphyl backbone. The influence of metal center
solvent
temperature and Al/Ni ratio on oligomerization of decene mixture were studied in detail. Palladium-based catalyst was nearly inactive but nickel-based catalyst showed good activity toward oligomerization of decene mixture. In combination with isomerization of nonterminal olefins
linear components of decene mixture were nearly converted to oligomers. The resultant polyolefins were highly branched (branching degree
>
120/1000C) and had low molecular weight (3100‒4540 g/mol). The lubricant properties of the resultant oil products were further evaluated according to Chinese national standard. These polyolefin oils had excellent properties of viscosity index higher than 170 and pour point lower than -30°C
showing a good potential in the field of polyolefin lubricant base oil.
镍钯催化剂烯烃低聚支化
Nickel and palladium catalystsOlefinOligomerizationBranching
Wang F Z, Chen C L. Polym Chem, 2019, 10(19): 2354-2369. doi:10.1039/c9py00226jhttp://dx.doi.org/10.1039/c9py00226j
Hu Haibin(胡海斌), Gao Haiyang(高海洋), Wu Qing(伍青). Acta Polymerica Sinica(高分子学报), 2011, (9): 965-972. doi:10.3724/sp.j.1105.2011.11085http://dx.doi.org/10.3724/sp.j.1105.2011.11085
Mitchell N E, Long B K. Polym Int, 2019, 68(1): 14-26. doi:10.1002/pi.5694http://dx.doi.org/10.1002/pi.5694
Soshnikov I E, Bryliakov K P, Antonov A A, Sun W H, Talsi E P. Dalton Trans, 2019, 48(23): 7974-7984. doi:10.1039/c9dt01297dhttp://dx.doi.org/10.1039/c9dt01297d
Wang Z, Liu Q, Solan G A, Sun W H. Coord Chem Rev, 2017, 350: 68-83. doi:10.1016/j.ccr.2017.06.003http://dx.doi.org/10.1016/j.ccr.2017.06.003
Shultz L H, Tempel D J, Brookhart M. J Am Chem Soc, 2001, 123(47): 11539-11555. doi:10.1021/ja011055jhttp://dx.doi.org/10.1021/ja011055j
Leatherman M D, Svejda S A, Johnson L K, Brookhart M. J Am Chem Soc, 2003, 125(10): 3068-3081. doi:10.1021/ja021071whttp://dx.doi.org/10.1021/ja021071w
Johnson L K, Killian C M, Brookhart M. J Am Chem Soc, 1995, 117(23): 6414-6415. doi:10.1021/ja00128a054http://dx.doi.org/10.1021/ja00128a054
Guo L H, Dai S Y, Sui X L, Chen C L. ACS Catal, 2016, 6(1): 428-441. doi:10.1021/acscatal.5b02426http://dx.doi.org/10.1021/acscatal.5b02426
Pei L X, Liu F S, Liao H, Gao J, Zhong L, Gao H Y, Wu Q. ACS Catal, 2018, 8(2): 1104-1113. doi:10.1021/acscatal.7b03282http://dx.doi.org/10.1021/acscatal.7b03282
Ai Jiaoyan(艾娇艳), Zhu Fangming(祝方明), Lin Shangan(林尚安). Acta Polymerica Sinica(高分子学报), 2005, (1): 71-75. doi:10.3321/j.issn:1000-3304.2005.01.014http://dx.doi.org/10.3321/j.issn:1000-3304.2005.01.014
Ai Jiaoyan(艾娇艳), Zhu Fangming(祝方明), Lin Shangan(林尚安). Acta Polymerica Sinica(高分子学报), 2006, (4): 225-228. doi:10.3321/j.issn:1000-3304.2006.02.005http://dx.doi.org/10.3321/j.issn:1000-3304.2006.02.005
O’Connor K S, Lamb J R, Vaidya T, Keresztes I, Klimovica K, LaPointe A M, Daugulis O, Coates G W. Macromolecules, 2017, 50(18): 7010-7027. doi:10.1021/acs.macromol.7b01150http://dx.doi.org/10.1021/acs.macromol.7b01150
O’Connor K S, Watts A, Vaidya T, LaPointe A M, Hillmyer M A, Coates G W. Macromolecules, 2016, 49(18): 6743-6751. doi:10.1021/acs.macromol.6b01567http://dx.doi.org/10.1021/acs.macromol.6b01567
Vaidya T, Klimovica K, LaPointe A M, Keresztes I, Lobkovsky E B, Daugulis O, Coates G W. J Am Chem Soc, 2014, 136(20): 7213-7216. doi:10.1021/ja502130whttp://dx.doi.org/10.1021/ja502130w
Rhinehart J L, Brown L A, Long B K. J Am Chem Soc, 2013, 135(44): 16316-16319. doi:10.1021/ja408905thttp://dx.doi.org/10.1021/ja408905t
Rhinehart J L, Mitchell N E, Long B K. ACS Catal, 2014, 4(8): 2501-2504. doi:10.1021/cs500694mhttp://dx.doi.org/10.1021/cs500694m
Dai S Y, Sui X L, Chen C L. Angew Chem Int Ed, 2015, 54(34): 9948-9953. doi:10.1002/anie.201503708http://dx.doi.org/10.1002/anie.201503708
Zai S, Gao H, Huang Z, Hu H, Wu H, Wu Q. ACS Catal, 2012, 2(3): 433-440. doi:10.1021/cs200593chttp://dx.doi.org/10.1021/cs200593c
Gao H Y, Liu F S, Hu H B, Zhu F M, Wu Q. Chinese J Polym Sci, 2013, 31(4): 563-573. doi:10.1007/s10118-013-1251-6http://dx.doi.org/10.1007/s10118-013-1251-6
Hu H B, Zhang L, Gao H Y, Zhu F M, Wu Q. Chem Eur J, 2014, 20(11): 3225-3233. doi:10.1002/chem.201303813http://dx.doi.org/10.1002/chem.201303813
Hu H B, Gao H Y, Chen D R, Li G L, Tan Y X, Liang G D, Zhu F M, Wu Q. ACS Catal, 2015, 5(1): 122-128. doi:10.1021/cs501081ahttp://dx.doi.org/10.1021/cs501081a
Liao H, Zhong L, Xiao Z F, Zheng T, Gao H Y, Wu Q. Chem Eur J, 2016, 22(39): 14048-14055. doi:10.1002/chem.201602467http://dx.doi.org/10.1002/chem.201602467
Chen X L, Gao J, Liao H, Gao H Y, Wu Q. Chinese J Polym Sci, 2018, 36(2): 176-184. doi:10.1007/s10118-018-2052-8http://dx.doi.org/10.1007/s10118-018-2052-8
Liu F S, Hu H B, Xu Y, Guo L H, Zai S B, Song K M, Gao H Y, Zhang L, Zhu F M, Wu Q. Macromolecules, 2009, 42(20): 7789-7796. doi:10.1021/ma9013466http://dx.doi.org/10.1021/ma9013466
Liu J, Chen D R, Wu H, Xiao Z F, Gao H Y, Zhu F M, Wu Q. Macromolecules, 2014, 47(10): 3325-3331. doi:10.1021/ma5004634http://dx.doi.org/10.1021/ma5004634
Zhong L, Li G L, Liang G D, Gao H Y, Wu Q. Macromolecules, 2017, 50(7): 2675-2682. doi:10.1021/acs.macromol.7b00121http://dx.doi.org/10.1021/acs.macromol.7b00121
Zhong S H, Tan Y X, Zhong L, Gao J, Liao H, Jiang L, Gao H Y, Wu Q. Macromolecules, 2017, 50(15): 5661-5669. doi:10.1021/acs.macromol.7b01132http://dx.doi.org/10.1021/acs.macromol.7b01132
Zhong L, Du C, Liao G F, Liao H, Zheng H D, Wu Q, Gao H Y. J Catal, 2019, 375: 113-123. doi:10.1016/j.jcat.2019.05.026http://dx.doi.org/10.1016/j.jcat.2019.05.026
Zhong L, Zheng H D, Du C, Du W B, Liao G F, Cheung C S, Gao H Y. J Catal, 2020, 384: 208-217. doi:10.1016/j.jcat.2020.02.022http://dx.doi.org/10.1016/j.jcat.2020.02.022
Zheng H D, Zhong L, Du C, Du W B, Cheung C S, Ruan J J, Gao H Y. Catal Sci Technol, 2021, 11(1): 124-135. doi:10.1039/d0cy01617ahttp://dx.doi.org/10.1039/d0cy01617a
Xu Zhikang(徐志康), Feng Linxian(封麟先), Yang shilin(杨士林). Acta Polymerica Sinica(高分子学报), 1993, (5): 633-635
Gao Zhenzhen(高针针), Wang Mengxue(王梦雪), Xu Sheng(许胜), Mi Puke(米普科), Wang Sihan(王斯晗), Wang Libo(王力搏). J Mol Catal(分子催化), 2016, 30(3): 214-225. doi:10.1109/icccn.2016.7568553http://dx.doi.org/10.1109/icccn.2016.7568553
Gao J, Ying Z H, Zhong L, Liao H, Gao H Y, Qing W. Polym Chem, 2018, 9(9): 1109-1115. doi:10.1039/c8py00047fhttp://dx.doi.org/10.1039/c8py00047f
Gao J, Zhang L, Zhong L, Du C, Liao H, Gao H Y, Wu Q. Polymer, 2019, 164: 26-32. doi:10.1016/j.polymer.2019.01.007http://dx.doi.org/10.1016/j.polymer.2019.01.007
Huang Z F, Song K M, Liu F S, Long J M, Hu H B, Gao H Y, Wu Q. J Polym Sci, Part A: Polym Chem, 2008, 46(5): 1618-1628. doi:10.1002/pola.22499http://dx.doi.org/10.1002/pola.22499
Salo E V, Guan Z B. Organometallics, 2003, 22(24): 5033-5046. doi:10.1021/om034051rhttp://dx.doi.org/10.1021/om034051r
Guo L H, Gao H Y, Guan Q R, Hu H B, Deng J A, Liu J, Liu FS, Wu Q. Organometallics, 2012, 31(17): 6054-6062. doi:10.1021/om300380bhttp://dx.doi.org/10.1021/om300380b
Falivene L, Credendino R, Poater A, Petta A, Serra L, Oliva R, Scarano V, Cavallo L. Organometallics, 2016, 35(13): 2286-2293. doi:10.1021/acs.organomet.6b00371http://dx.doi.org/10.1021/acs.organomet.6b00371
Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L. Nat Chem, 2019, 11(10): 872-879. doi:10.1038/s41557-019-0319-5http://dx.doi.org/10.1038/s41557-019-0319-5
Du C, Zhong L, Gao J, Zhong S H, Liao H, Gao H Y, Wu Q. Polym Chem, 2019, 10(16): 2029-2038. doi:10.1039/c9py00126chttp://dx.doi.org/10.1039/c9py00126c
Lindeman L P, Adama J Q. Anal Chem, 1971, 43(10): 1245-1252. doi:10.1021/ac60304a002http://dx.doi.org/10.1021/ac60304a002
0
浏览量
78
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构