浏览全部资源
扫码关注微信
江苏省环境友好高分子材料重点实验室 常州大学材料科学与工程学院 江苏省光伏科学与工程协同创新中心 常州 213164
E-mail: cloudyyang@cczu.edu.cn
纸质出版日期:2022-01-20,
网络出版日期:2021-09-08,
收稿日期:2021-05-20,
修回日期:2021-07-19,
移动端阅览
曹宏伟,顾国章,王卓等.苹果酸基脂肪共聚酯反应性共混制备超韧聚乳酸共混物[J].高分子学报,2022,53(01):79-89.
Cao Hong-wei,Guo-zhang Gu,Wang Zhuo,et al.Preparation of Super-tough Poly(lactic acid) Using Malic Acid-based Copolyester via Reactive Blending[J].ACTA POLYMERICA SINICA,2022,53(01):79-89.
曹宏伟,顾国章,王卓等.苹果酸基脂肪共聚酯反应性共混制备超韧聚乳酸共混物[J].高分子学报,2022,53(01):79-89. DOI: 10.11777/j.issn1000-3304.2021.21155.
Cao Hong-wei,Guo-zhang Gu,Wang Zhuo,et al.Preparation of Super-tough Poly(lactic acid) Using Malic Acid-based Copolyester via Reactive Blending[J].ACTA POLYMERICA SINICA,2022,53(01):79-89. DOI: 10.11777/j.issn1000-3304.2021.21155.
通过反应性共混使聚乳酸(PLA)与增韧剂原位生成接枝共聚物,可增强界面相互作用,有效提高不相容共混物的韧性. 本研究将聚(癸二酸/苹果酸-
co
-丁二醇/丙二醇)酯(PBSePM)在六亚甲基二异氰酸酯(HDI)作用下与PLA反应性共混制备了PLA/PBSePM共混物. 重点研究了HDI对PLA/PBSePM共混物的力学性能、流变行为、相形态和熔融结晶行为的影响. 结果表明,HDI的加入可以显著提高共混物界面相容性和韧性. 随着HDI用量的增加,反应程度加剧,共混物的凝胶分数和复数黏度增加,共混物的相界面变模糊,相容性明显变好. 在低HDI含量时,基质中存在空穴,可以耗散大量的能量. 随着HDI含量进一步增加,共混物的相界面几乎完全消失,界面黏附力过强,韧性有所下降. 添加2.9 wt%和4.3 wt%的HDI,共混物的缺口冲击强度大于80 kJ/m
2
. 随着HDI加入,共混物的结晶能力下降,玻璃化转变温度和冷结晶温度升高,熔融焓减小.
Reactive compatibilization is an efficient way to enhance the interfacial adhesion and improve the toughness of the blends. In this study
a fully bio-based aliphatic polyester (PBSePM) containing malic acid moiety was synthesized. Then
super-tough poly(lactic acid) (PLA)/mal
ic acid-based aliphatic polyester blends (PLA/PBSePM) were prepared by reactive blending in the presence of hexamethylene diisocyanate (HDI). The reactive blending behavior was investigated by torque
proton nuclear magnetic resonance (
1
H-NMR)
Fourier transform infrared spectroscopy (FTIR)
and wide-angle X-ray diffraction (WAXD). The effects of HDI addition on the tensile properties
rheological behavior
phase morphology
and melting and crystallization behavior of PLA/PBSePM blends were studied by dynamic rheometer
scanning electron microscopy (SEM)
and differential scanning calorimetry (DSC). The results showed that the gel fraction and complex viscosity of the blends increased with the increase of the amount of HDI. In the reactive blending processing
HDI reacted with PBSePM and PLA. The
in situ
PLA-PBSePM copolymer was formed
which acted as a compatibilizer to enhance the interfacial adhesion between PLA and PBSePM. With the increase of HDI
the phase interface of the blends became blurred
and the compatibility was significantly improved. The cavities emerged in the tensile fracture surfaces and impact fracture surfaces of the reactive blends
which would dissipate energy during the stretching and impacting evolution. With the increase of HDI content
the interfacial adhesion was too strong
which delays the occurrence of matrix yielding; hence
the toughness decreased. All the blends presented a great tensile toughness with an elongation at break higher than 300%. The impact toughness of the blends significantly increased first and then slightly decreased with the increasing amount of HDI. The notched impact strengths of all the reactive blends are higher than 53 kJ/m
2
indicating a super-tough behavior. The highest notched impact strength of 81.5 kJ/m
2
was achieved while adding 2.9 wt% HDI. With the increase of HDI
the crystallization capacity of PLA decreased
the glass transition temperature and cold crystallization temperature increased first and
then almost remained unchanged; meanwhile
the melting enthalpy decreased. This study suggested that incorporated malic acid into aliphatic polyester and then reactive blending would be an efficient way to obtain bio-based super-tough PLA materials.
聚乳酸共聚酯苹果酸反应性共混超韧
Poly(lactic acid)CopolyesterMalic acidReactive blendingSuper-tough
Lasprilla A J R, Martinez G A R, Lunelli B H, Jardini A L, Filho R M J B A. Biotechnol Adv, 2012, 30(1): 321-328. doi:10.1016/j.biotechadv.2011.06.019http://dx.doi.org/10.1016/j.biotechadv.2011.06.019
Mahmoodi A, Ghodrati S, Khorasani M. ACS Omega, 2019, 4(12): 14947-14954. doi:10.1021/acsomega.9b01731http://dx.doi.org/10.1021/acsomega.9b01731
Benwood C, Anstey A, Andrzejewski J, Misra M, Mohanty A K. ACS Omega, 2018, 3(4): 4400-4411. doi:10.1021/acsomega.8b00129http://dx.doi.org/10.1021/acsomega.8b00129
Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S. RSC Adv, 2020, 10(22): 13316-13368. doi:10.1039/d0ra01801ehttp://dx.doi.org/10.1039/d0ra01801e
Nagarajan V, Mohanty A K, Misra M. ACS Sustain Chem Eng, 2016, 4(6): 2899-2916. doi:10.1021/acssuschemeng.6b00321http://dx.doi.org/10.1021/acssuschemeng.6b00321
Wang M, Wu Y, Li Y D, Zeng J B. Polym Rev, 2017, 57(4): 1-37. doi:10.1080/15583724.2017.1287726http://dx.doi.org/10.1080/15583724.2017.1287726
Wu S. Polym Eng Sci, 1990, 30(13): 753-761. doi:10.1002/pen.760301302http://dx.doi.org/10.1002/pen.760301302
Zhang J, Li T, Mannion A M, Schneiderman D K, Hillmyer M A, Bates F S. ACS Macro Lett, 2016, 5(3): 407-412. doi:10.1021/acsmacrolett.6b00091http://dx.doi.org/10.1021/acsmacrolett.6b00091
Maglio G, Migliozzi A, Palumbo R. Polymer, 2003, 44(2): 369-375. doi:10.1016/s0032-3861(02)00764-4http://dx.doi.org/10.1016/s0032-3861(02)00764-4
Choochottiros C. Macromol Res, 2016, 24(9): 838-846. doi:10.1007/s13233-016-4118-1http://dx.doi.org/10.1007/s13233-016-4118-1
Turco R, Tesser R, Cucciolito M E, Fagnano M, Ottaiano L, Mallardo S, Malinconico M, Santagata G, Serio M D. ACS Sustain Chem Eng, 2019, 7(4): 4069-4077. doi:10.1021/acssuschemeng.8b05519http://dx.doi.org/10.1021/acssuschemeng.8b05519
Yang X, Clénet J, Xu H, Odelius K, Hakkarainen M. Macromolecules, 2015, 48(8): 2509-2518. doi:10.1021/acs.macromol.5b00235http://dx.doi.org/10.1021/acs.macromol.5b00235
Tan J H, Lu T T, Li R, Zhang S, Liu W C, Zhu X B, Zhang J W, Xin J N. ACS Sustain Chem Eng, 2019, 7(19): 15957-15965. doi:10.1021/acssuschemeng.9b02312http://dx.doi.org/10.1021/acssuschemeng.9b02312
Long Y, Zhang R Y, Huang J C. ACS Sustain Chem Eng, 2017, 5(10): 9244-9253. doi:10.1021/acssuschemeng.7b02196http://dx.doi.org/10.1021/acssuschemeng.7b02196
Yang R, Cao H, Zhang P, Chen L, Zou G, Zhang X, Li J. ACS Appl Polym Mater, 2021, 3(1): 299-309. doi:10.1021/acsapm.0c01095http://dx.doi.org/10.1021/acsapm.0c01095
Coativy G, Misra M, Mohanty A K. ACS Sustain Chem Eng, 2016, 4(4): 2142-2149. doi:10.1021/acssuschemeng.5b01596http://dx.doi.org/10.1021/acssuschemeng.5b01596
Zeng J B, Li K A, Du A K. RSC Adv, 2015, 5(41): 32546-32565. doi:10.1039/c5ra01655jhttp://dx.doi.org/10.1039/c5ra01655j
Brito G F, Agrawal P, Mélo T. Macromol Symp, 2016, 367(1): 176-182. doi:10.1002/masy.201500158http://dx.doi.org/10.1002/masy.201500158
Baouz T, Rezgui F, Yilmazer U. J Appl Polym Sci, 2013, 128(5): 3193-3204. doi:10.1002/app.38529http://dx.doi.org/10.1002/app.38529
Wang X, Mi J, Wang J, Zhou H, Wang X. RSC Adv, 2018, 8(60): 34418-34427. doi:10.1039/c8ra07510ghttp://dx.doi.org/10.1039/c8ra07510g
Wu Zhenggui(吴正贵), Dong Xinyi(董新一), Dong Weifu(东为富). Acta Polymerica Sinica(高分子学报), 2021, 52(7): 734-740. doi:10.11777/j.issn1000-3304.2020.20274http://dx.doi.org/10.11777/j.issn1000-3304.2020.20274
Hu X, Li Y, Li M, Kang H, Zhang L. Ind Eng Chem Res, 2016, 55(34): 9195-9204. doi:10.1021/acs.iecr.6b02159http://dx.doi.org/10.1021/acs.iecr.6b02159
Feng L, Bian X, Gao L,Chen Z, Chen X. Polym Degrad Stabil, 2016, 125: 148-155. doi:10.1016/j.polymdegradstab.2015.12.017http://dx.doi.org/10.1016/j.polymdegradstab.2015.12.017
Kang H, Qiao B, Wang R, Wang Z, Zhang L, Ma J, Coates P. Polymer, 2013, 54(9): 2450-2458. doi:10.1016/j.polymer.2013.02.053http://dx.doi.org/10.1016/j.polymer.2013.02.053
Ojijo V, Sinha R S, Sadiku R. ACS Appl Mater Interfaces, 2012, 4(12): 6690-6701. doi:10.1021/am301842ehttp://dx.doi.org/10.1021/am301842e
Ojijo V, Ray S S, Sadiku R. ACS Appl Mater Interfaces, 2013, 5(10): 4266-4276. doi:10.1021/am400482fhttp://dx.doi.org/10.1021/am400482f
Wang L, Ma W, Gross R A, McCarthy S P. Polym Degrad Stabil, 1998, 59(1): 161-168. doi:10.1016/s0141-3910(97)00196-1http://dx.doi.org/10.1016/s0141-3910(97)00196-1
Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q. ACS Appl Mater Interfaces, 2012, 4(2): 897-905. doi:10.1021/am201564fhttp://dx.doi.org/10.1021/am201564f
Xu Z, Zhang Y, Wang Z, Sun N, Li H. ACS Appl Mater Interfaces, 2011, 3(12): 4858-4864. doi:10.1021/am201355jhttp://dx.doi.org/10.1021/am201355j
Gramlich W M, Robertson M L, Hillmyer M A. Macromolecules, 2010, 43(5): 2313-2321. doi:10.1021/ma902449xhttp://dx.doi.org/10.1021/ma902449x
Xu Y Q, Qu J P. J Appl Polym Sci, 2009, 112(6): 3185-3191. doi:10.1002/app.29797http://dx.doi.org/10.1002/app.29797
Peng Yating(彭亚婷), Wang Tao(王涛), Li Hang(李杭), Yang Rong(杨荣), Li Jinchun(李锦春). Acta Polymerica Sinica(高分子学报), 2020, 51(3): 54-63. doi:10.11777/j.issn1000-3304.2019.19177http://dx.doi.org/10.11777/j.issn1000-3304.2019.19177
Yang R, Wang B, Li M, Zhang X, Li J. Ind Crop Prod, 2019, 136: 121-128. doi:10.1016/j.triboint.2019.03.072http://dx.doi.org/10.1016/j.triboint.2019.03.072
Yang R, Li M, Zhang X, Li J. Ind Crop Prod. 2021, 169: 113648. doi:10.1016/j.indcrop.2021.113648http://dx.doi.org/10.1016/j.indcrop.2021.113648
Yang R, Cao H, Li C, Zou G, Zhang X, Li J. J Appl Polym Sci, 2021, e51413. https://doi.org/10.1002/app.51413https://doi.org/10.1002/app.51413
Tesfaye M, Patwa R, Dhar P, Katiyar V. ACS Omega, 2017, 2: 7071-7084. doi:10.1021/acsomega.7b01005http://dx.doi.org/10.1021/acsomega.7b01005
Shan G F, Yang W, Tang X G, Yang M B, Xie B H, Fu Q, Mai Y M. Polym Test, 2010, 29: 273-280. doi:10.1016/j.polymertesting.2009.11.011http://dx.doi.org/10.1016/j.polymertesting.2009.11.011
Liu Z H, Zhu X G, Wu L X, Li Y, Qi Z N, Choy C, Wang F S. Polymer, 2001, 42 (2): 737-746. doi:10.1016/s0032-3861(00)00375-xhttp://dx.doi.org/10.1016/s0032-3861(00)00375-x
Garlotta D. J Polym Environ, 2001, 9(2): 63-84. doi:10.1023/a:1020200822435http://dx.doi.org/10.1023/a:1020200822435
0
浏览量
151
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构