浏览全部资源
扫码关注微信
1.郑州大学材料科学与工程学院 郑州 450001
2.北京分子科学国家研究中心 高分子化学与物理教育部 重点实验室 北京大学软物质科学与工程中心 北京大学化学与分子工程学院 北京 100871
E-mail: zshen@pku.edu.cn
zsj316@zzu.edu.cn
纸质出版日期:2021-12-20,
网络出版日期:2021-09-07,
收稿日期:2021-05-23,
修回日期:2021-06-30,
扫 描 看 全 文
李玉洁,罗龙飞,沈志豪等.非偏振光诱导含聚二甲基硅氧烷的偶氮苯液晶嵌段共聚物薄膜微相分离结构的垂直取向[J].高分子学报,2021,52(12):1611-1621.
Li Yu-jie,Luo Long-fei,Shen Zhi-hao,et al.Perpendicular Orientation of Polydimethylsiloxane Nanocylinders in Thin Film of a Liquid Crystalline Block Copolymer Induced by Unpolarized Light[J].ACTA POLYMERICA SINICA,2021,52(12):1611-1621.
李玉洁,罗龙飞,沈志豪等.非偏振光诱导含聚二甲基硅氧烷的偶氮苯液晶嵌段共聚物薄膜微相分离结构的垂直取向[J].高分子学报,2021,52(12):1611-1621. DOI: 10.11777/j.issn1000-3304.2021.21158.
Li Yu-jie,Luo Long-fei,Shen Zhi-hao,et al.Perpendicular Orientation of Polydimethylsiloxane Nanocylinders in Thin Film of a Liquid Crystalline Block Copolymer Induced by Unpolarized Light[J].ACTA POLYMERICA SINICA,2021,52(12):1611-1621. DOI: 10.11777/j.issn1000-3304.2021.21158.
通过原子转移自由基聚合(ATRP)合成了聚二甲基硅氧烷-嵌段-聚(11-(4-(4'-氰基偶氮苯)苯氧基)十一烷基丙烯酸酯)(PDMS-
b
-PAz)的二嵌段共聚物,其中PDMS的体积分数是27%. 利用原子力显微镜和掠入射小角X射线散射等表征手段研究了不同厚度的薄膜分别在热退火和非偏振光取向后的组装形貌. 结果显示:热退火时,当膜厚较低时,形成的是面内无序排列的柱状结构;而当膜厚增加到319 nm时,形成的是面内排列与垂直于基底排列共存的杂化结构,即使当膜厚增加至406 nm时,这种杂化结构仍然保持. 而采用非偏振光取向时,即使对于厚度仅为55 nm的薄膜就能获得垂直于基底排列的微相分离结构,且当膜厚增加至406 nm时,这种结构仍然得到保持. 这是首次利用非偏振光诱导含PDMS的嵌段共聚物薄膜取向得到PDMS纳米柱垂直于基底的排列,这一取向方法将有助于推动含PDMS的嵌段共聚物薄膜在纳米模板等领域中的应用.
A diblock copolymer containing polydimethylsiloxane and an azobenzene-based liquid crystalline polymer
PDMS-
b
-PAz
was synthesized by atom transfer radical polymerization (ATRP). The volume fraction of PDMS was 27%. Atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GI-SAXS) were used to investigate the morphologies of thin films with different thicknesses after thermal annealing and unpolarized light orientation. The results show that the disordered cylindrical structure is formed in thinner films during thermal annealing. However
when the film thickness is increased to 319 nm
a coexistence of in-plane and out-of-plane arranged PDMS nanocylinders were observed. Even when the film thickness is increased to 406 nm
this coexistent state still remains. The microphase-separated structure perpendicular to the substrate can be obtained even for the thin film with a thickness of only 55 nm when being aligned with unpolarized light
and this structure is maintained when the film thickness is increased to 406 nm. This is the first time that the perpendicular orientation of PDMS nanocylinders in block copolymer films is obtained by the alignment of unpolarized light. This orientation method will benefit the application of PDMS-containing block copolymer films in nanotemplates and other fields.
嵌段共聚物偶氮苯液晶高分子聚二甲基硅氧烷非偏振光取向
Block copolymerAzobenzene-based liquid crystalline polymerPolydimethylsiloxaneUnpolarized light orientation
Park M, Harrison C, Chaikin P M, Register R A, Adamson D H. Science, 1997, 276(5317): 1401-1404. doi:10.1126/science.276.5317.1401http://dx.doi.org/10.1126/science.276.5317.1401
Bita I, Yang J K W, Jung Y S, Ross C A, Thomas E L, Berggren K K. Science, 2008, 321(5891): 939-943. doi:10.1126/science.1159352http://dx.doi.org/10.1126/science.1159352
Li P, Wang Z, Li W, Liu Y, Wang J, Wang S. ACS Appl Mater Interfaces, 2015, 7(28): 15481-15493. doi:10.1021/acsami.5b03786http://dx.doi.org/10.1021/acsami.5b03786
Sheng J, Zhang M, Xu Y, Yu J, Ding B. ACS Appl Mater Interfaces, 2016, 8(40): 27218-27226. doi:10.1021/acsami.6b09392http://dx.doi.org/10.1021/acsami.6b09392
McDonald J C, Whitesides G M. Acc Chem Res, 2002, 35(7): 491-499. doi:10.1021/ar010110qhttp://dx.doi.org/10.1021/ar010110q
McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H, Schueller O J A, Whitesides G M. Electrophoresis, 2000, 21(1): 27-40. doi:10.1002/(sici)1522-2683(20000101)21:1<27::aid-elps27>3.0.co;2-chttp://dx.doi.org/10.1002/(sici)1522-2683(20000101)21:1<27::aid-elps27>3.0.co;2-c
Liberman-Martin A L, Chu C K, Grubbs R H. Macromol Rapid Commun, 2017, 38(13): 1700058. doi:10.1002/marc.201700058http://dx.doi.org/10.1002/marc.201700058
Sinturel C, Bates F S, Hillmyer M A. ACS Macro Lett, 2015, 4(9): 1044-1050. doi:10.1021/acsmacrolett.5b00472http://dx.doi.org/10.1021/acsmacrolett.5b00472
Huang M, Yue K, Huang J, Liu C, Zhou Z, Wang J, Wu K, Shan W, Shi A C, Cheng S Z D. ACS Nano, 2018, 12(2): 1868-1877. doi:10.1021/acsnano.7b08687http://dx.doi.org/10.1021/acsnano.7b08687
Lo T Y, Krishnan M R, Lu K Y, Ho R M. Prog Polym Sci, 2018, 77: 19-68. doi:10.1016/j.progpolymsci.2017.10.002http://dx.doi.org/10.1016/j.progpolymsci.2017.10.002
Aissou K, Mumtaz M, Fleury G, Portale G, Navarro C, Cloutet E, Brochon C, Ross C A, Hadziioannou G. Adv Mater, 2015, 27(2): 261-265. doi:10.1002/adma.201404077http://dx.doi.org/10.1002/adma.201404077
Chuang V P, Ross C A, Gwyther J, Manners I. Adv Mater, 2009, 21(37): 3789-3793. doi:10.1002/adma.200900756http://dx.doi.org/10.1002/adma.200900756
Jung Y S, Ross C A. Nano Lett, 2007, 7(7): 2046-2050. doi:10.1021/nl070924lhttp://dx.doi.org/10.1021/nl070924l
Luo Y, Montarnal D, Kim S, Shi W, Barteau K P, Pester C W, Hustad P D, Christianson M D, Fredrickson G H, Kramer E J, Hawker C J. Macromolecules, 2015, 48(11): 3422-3430. doi:10.1021/acs.macromol.5b00518http://dx.doi.org/10.1021/acs.macromol.5b00518
Chao C C, Wang T C, Ho R M, Georgopanos P, Avgeropoulos A, Thomas E L. ACS Nano, 2010, 4(4): 2088-2094. doi:10.1021/nn901370ghttp://dx.doi.org/10.1021/nn901370g
Jung Y S, Lee J H, Lee J Y, Ross C A. Nano Lett, 2010, 10(9): 3722-3726. doi:10.1021/nl1023518http://dx.doi.org/10.1021/nl1023518
Guan Y, Xu F, Wang X, Hui Y, Sha J, Tian Y, Wang Z, Zhang S, Chen D, Yang L. Microelectron Eng, 2021, 235: 111455. doi:10.1016/j.mee.2020.111455http://dx.doi.org/10.1016/j.mee.2020.111455
Liu K, Yang C M, Yang B M, Zhang L, Huang W C, Ouyang X P, Qi F G, Zhao N, Bian F G. Chinese J Polym Sci, 2020, 38(1): 92-99. doi:10.1007/s10118-019-2315-zhttp://dx.doi.org/10.1007/s10118-019-2315-z
Kim E, Kim W, Lee K H, Ross C A, Son J G. Adv Funct Mater, 2014, 24(44): 6981-6988. doi:10.1002/adfm.201401678http://dx.doi.org/10.1002/adfm.201401678
Kato T, Mizoshita N, Kishimoto K. Angew Chem Int Ed, 2006, 45(1): 38-68. doi:10.1002/anie.200501384http://dx.doi.org/10.1002/anie.200501384
Tschierske C. Chem Soc Rev, 2007, 36(12): 1930-1970. doi:10.1039/b615517khttp://dx.doi.org/10.1039/b615517k
Mukai K, Hara M, Nagano S, Seki T. Angew Chem Int Ed, 2016, 55(45): 14028-14032. doi:10.1002/anie.201607786http://dx.doi.org/10.1002/anie.201607786
Kao J, Thorkelsson K, Bai P, Rancatore B J, Xu T. Chem Soc Rev, 2013, 42(7): 2654-2678. doi:10.1039/c2cs35375jhttp://dx.doi.org/10.1039/c2cs35375j
Pathiranage T M S K, Kim M, Nguyen H Q, Washington K E, Biewer M C, Stefan M C. Macromolecules, 2016, 49(18): 6846-6857. doi:10.1021/acs.macromol.6b01378http://dx.doi.org/10.1021/acs.macromol.6b01378
Hamley I W, Castelletto V, Lu Z B, Imrie C T, Itoh T, Al-Hussein M. Macromolecules, 2004, 37(13): 4798-4807. doi:10.1021/ma0498619http://dx.doi.org/10.1021/ma0498619
Yu H, Iyoda T, Ikeda T. J Am Chem Soc, 2006, 128(34): 11010-11011. doi:10.1021/ja064148fhttp://dx.doi.org/10.1021/ja064148f
Yu H, Li J, Ikeda T, Iyoda T. Adv Mater, 2006, 18(17): 2213-2215. doi:10.1002/adma.200600582http://dx.doi.org/10.1002/adma.200600582
Li J, Kamata K, Komura M, Yamada T, Yoshida H, Iyoda T. Macromolecules, 2007, 40(23): 8125-8128. doi:10.1021/ma071821shttp://dx.doi.org/10.1021/ma071821s
Morikawa Y, Kondo T, Nagano S, Seki T. Chem Mater, 2007, 19(7): 1540-1542. doi:10.1021/cm0630845http://dx.doi.org/10.1021/cm0630845
Yu H, Kobayashi T, Hu G H. Polymer, 2011, 52(7): 1554-1561. doi:10.1016/j.polymer.2011.01.053http://dx.doi.org/10.1016/j.polymer.2011.01.053
Wang T, Li X, Dong Z, Huang S, Yu H. ACS Appl Mater Interfaces, 2017, 9(29): 24864-24872. doi:10.1021/acsami.7b06086http://dx.doi.org/10.1021/acsami.7b06086
Luo L, Lyu X, Tang Z, Shen Z, Fan X H. Macromolecules, 2020, 53(21): 9619-9630. doi:10.1021/acs.macromol.0c01063http://dx.doi.org/10.1021/acs.macromol.0c01063
Tian C, Zhou K C, Lu Y F, Li J J, Yao Y, Tao X F, Zhuang Q X, Xie Y F, Lin S L. Chinese J Polym Sci, 2021, 39: 1169-1176. doi:10.1007/s10118-021-2576-1http://dx.doi.org/10.1007/s10118-021-2576-1
Yu H. Prog Polym Sci, 2014, 39(4): 781-815. doi:10.1016/j.progpolymsci.2013.08.005http://dx.doi.org/10.1016/j.progpolymsci.2013.08.005
Yu H, Ikeda T. Adv Mater, 2011, 23(19): 2149-2180. doi:10.1002/adma.201100131http://dx.doi.org/10.1002/adma.201100131
Nagano S, Koizuka Y, Murase T, Sano M, Shinohara Y, Amemiya Y, Seki T. Angew Chem Int Ed, 2012, 51(24): 5884-5888. doi:10.1002/anie.201201346http://dx.doi.org/10.1002/anie.201201346
Sano M, Nakamura S, Hara M, Nagano S, Shinohara Y, Amemiya Y, Seki T. Macromolecules, 2014, 47(20): 7178-7186. doi:10.1021/ma501803ghttp://dx.doi.org/10.1021/ma501803g
Li W, Müller M. Prog Polym Sci, 2016, 54-55: 47-75. doi:10.1016/j.progpolymsci.2015.10.008http://dx.doi.org/10.1016/j.progpolymsci.2015.10.008
Russell T P, Chai Y. Macromolecules, 2017, 50(12): 4597-4609. doi:10.1021/acs.macromol.7b00418http://dx.doi.org/10.1021/acs.macromol.7b00418
Ji S, Wan L, Liu C C, Nealey P F. Prog Polym Sci, 2016, 54-55: 76-127. doi:10.1016/j.progpolymsci.2015.10.006http://dx.doi.org/10.1016/j.progpolymsci.2015.10.006
Wei R, He Y, Wang X. RSC Adv, 2014, 4(102): 58386-58396. doi:10.1039/c4ra09863chttp://dx.doi.org/10.1039/c4ra09863c
Okano K. Jpn J Appl Phys, 1983, 22(Part 2, No. 6): L343-L344. doi:10.1143/jjap.22.l343http://dx.doi.org/10.1143/jjap.22.l343
Kimura H, Nakano H. J Phys Soc Jpn, 1985, 54(5): 1730-1736. doi:10.1143/jpsj.54.1730http://dx.doi.org/10.1143/jpsj.54.1730
Nagano S. Langmuir, 2019, 35(17): 5673-5683. doi:10.1021/acs.langmuir.8b01824http://dx.doi.org/10.1021/acs.langmuir.8b01824
Fukuhara K, Fujii Y, Nagashima Y, Hara M, Nagano S, Seki T. Angew Chem Int Ed, 2013, 52(23): 5988-5991. doi:10.1002/anie.201300560http://dx.doi.org/10.1002/anie.201300560
0
浏览量
72
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构