浏览全部资源
扫码关注微信
四川大学化学学院 环保型高分子材料国家地方联合工程实验室 成都 610064
E-mail: l.chen.scu@gmail.com
chensichong@scu.edu.cn
纸质出版日期:2022-01-20,
网络出版日期:2021-09-02,
收稿日期:2021-05-27,
修回日期:2021-06-25,
移动端阅览
田国强,刘文,陈力等.噻唑鎓氯盐功能化PS介孔微球用于催化环酯本体开环聚合[J].高分子学报,2022,53(01):30-36.
Tian Guo-qiang,Liu Wen,Chen Li,et al.Ring-opening Polymerization of Cyclic Esters in Bulk Catalyzed by PS Mesoporous Microspheres Supported Thiazolium Chloride[J].ACTA POLYMERICA SINICA,2022,53(01):30-36.
田国强,刘文,陈力等.噻唑鎓氯盐功能化PS介孔微球用于催化环酯本体开环聚合[J].高分子学报,2022,53(01):30-36. DOI: 10.11777/j.issn1000-3304.2021.21162.
Tian Guo-qiang,Liu Wen,Chen Li,et al.Ring-opening Polymerization of Cyclic Esters in Bulk Catalyzed by PS Mesoporous Microspheres Supported Thiazolium Chloride[J].ACTA POLYMERICA SINICA,2022,53(01):30-36. DOI: 10.11777/j.issn1000-3304.2021.21162.
小分子噻唑鎓在催化环酯单体本体开环聚合中,需要采用含氟结构的抗衡阴离子以促进相容,不利于聚合产物的生物安全性. 为了解决该问题,本文设计制备了一种不含氟的噻唑鎓功能化的聚苯乙烯介孔微球([Thi
]
Cl@PS),并用于催化内酯的开环聚合,研究了其催化底物适用性、催化动力学特点、以及催化剂分离和再利用. 结果表明,[Thi
]
Cl@PS比表面积可达到137 m
2
·g
-1
,在抗衡阴离子为氯离子时即可具有中等催化活性(0.75 h
-1
·mol
-1
·L). [Thi
]
Cl@PS与小分子噻唑鎓的催化行为和原理一致,对环酯单体具有位阻选择性,开环聚合过程表现为“慢引发”的一级动力学特征. 此外,[Thi
]
Cl@PS催化剂表现出了易分离的优点和一定程度的可再利用特点. 采用高比表面微球负载的方法,可有效促使无氟噻唑鎓非均相催化开环聚合,提高噻唑鎓类催化剂的安全性和绿色性.
Thiazoliums had been developed as a non-metal catalyst for bulk ring-opening polymerization (ROP) of cyclic esters
having the advantages of high stability
available for various monomers
and good controllability to polymerization. However
in order to achieve efficient catalysis under bulk polymerization conditions
fluorine-containing anions were generally used for preparing thiazoliums to promote the compatibility between catalysts and monomers
which was not conducive to the biosafety of the polymerization products. In this work
a built-in thiazolium chloride catalyst using mesoporous PS microsphere with high specific surface as the carrier was developed to achieve effective catalysis for ROP without introducing fluorine-containing anions. Through quaternization reaction between 4-methylthiazole and chloromethylated PS mesoporous microspheres (PS-CH
2
Cl)
built-in thiazolium chloride ([Thi
]
Cl@PS) catalyst supported by PS mesoporous microspheres was prepared. According to optical microscope
scanning electron microscope (SEM)
and BET measurement
the [Thi
]
Cl@PS (specific surface area 137 m
2
·g
-1
) with micron-size (50-250 μm
mean diameter 153 μm)
regular sphere morphology and a large number of inside pores (pore volume 0.31 cm
3
·g
-1
pore size 6.46 nm) were composed of compact accumulated nanoparticles. Based on FTIR and elemental analysis
the loading amount of thiazolium chloride in mesoporous PS microsphere was 0.67 mmol/g. Similar to the small molecular thiazolium catalysts
the [Thi
]
Cl@PS heterogeneous catalyst could selectively catalyze ROP of cyclic esters with relatively low steric hindrance (
i.e.
ε
-caprolactone
δ
-valerolactone
p
-dioxanone
and glycolide). Based on kinetic studies for catalyzing ROP of
ε
-caprolactone
both the [Thi
]
Cl@PS and small molecular thiazolium catalysts show "slow initiation" characteristics and first-ordered dynamics after fully initiation. The similar monomer selectivity and kinetic mode between the [Thi
]
Cl@PS heterogeneous catalyst and fluorine-containing small molecular thiazolium homogeneous catalyst suggest that they have a similar catalytic mechanism. Besides
the polymerization rate constants obtained from kinetic curves after fully initiation indicated that the [Thi
]
Cl@PS has medium catalytic efficiency (0.75 h
-1
·mol
-1
·L) relative to fluorine-containing small molecular thiazolium catalysts
i.e.
[Thi
]
PF
6
(7.50 h
-1
·mol
-1
·L)
[Thi
]
Tf
2
N (0.80 h
-1
·mol
-1
·L)
and [Thi
]
BF
4
(0.28 h
-1
·mol
-1
·L). Benefiting from the heterogeneous catalytic mode of [Thi
]
Cl@PS microspheres
it could be easily separated from the reaction system and recycled by dissolving the crude product in chloroform and filtration. Moreover
the recycled [Thi
]
Cl@PS was reused as catalyst for ROP
and showed similar catalyzing activity
compared to the original cycle. However
owing to the residual P
CL in microsphere
both molecular weight and polydispersity of yield PCL with recycled catalyst exhibited slight increase
suggesting that the controllability of polymerization also decreased.
噻唑鎓非均相催化开环聚合
ThiazoliumHeterogeneousCatalystRing-opening polymerization
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19015http://dx.doi.org/10.11777/j.issn1000-3304.2019.19015
Albertsson A C, Varma I K. Biomacromolecules, 2003, 4(6): 1466-1486. doi:10.1021/bm034247ahttp://dx.doi.org/10.1021/bm034247a
Vert M, Li S M, Spenlehauer G, Guerin P. J Mater Sci-Mater Med, 1992, 3(6): 432-446. doi:10.1007/bf00701240http://dx.doi.org/10.1007/bf00701240
Ji M J, Wu M Q, Han J Y, Zhang F J, Peng H W, Guo L H. Curr Org Chem, 2021, 25(2): 272-286. doi:10.2174/1385272824999200917151344http://dx.doi.org/10.2174/1385272824999200917151344
Shen Ting(沈婷), Ni Xufeng(倪旭峰), Ling Jun(凌君). Acta Polymerica Sinica(高分子学报), 2021, 52(5): 445-455. doi:10.11777/j.issn1000-3304.2020.20261http://dx.doi.org/10.11777/j.issn1000-3304.2020.20261
Wang Bin(王彬), Ji Heyuan(季鹤源), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2020, 51(10):1104-1120. doi:10.11777/j.issn1000-3304.2020.20111http://dx.doi.org/10.11777/j.issn1000-3304.2020.20111
Hu Q, Jie S Y, Braunstein P, Li B G. Chinese J Polym Sci, 2020, 38(3): 240-247. doi:10.1007/s10118-020-2347-4http://dx.doi.org/10.1007/s10118-020-2347-4
Shen Yong(沈勇), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报), 2020, 51(8):777-790. doi:10.11777/j.issn1000-3304.2020.20050http://dx.doi.org/10.11777/j.issn1000-3304.2020.20050
Yang H J, Chai C Q, Zuo Y K, Huang J F, Song Y Y, Jiang L, Huang W Y, Jiang Q M, Xue X Q, Jiang B B. Chinese J Polym Sci, 2020, 38(3): 231-239. doi:10.1007/s10118-020-2341-xhttp://dx.doi.org/10.1007/s10118-020-2341-x
Dove A P. ACS Macro Lett, 2012, 1(12): 1409-1412. doi:10.1021/mz3005956http://dx.doi.org/10.1021/mz3005956
Kiesewetter M K, Shin E J, Hedrick J L, Waymouth R M. Macromolecules, 2010, 43(5): 2093-2107. doi:10.1021/ma9025948http://dx.doi.org/10.1021/ma9025948
Tian G Q, Liu W, Chen L, Wu G, Chen S C, Wang Y Z. ChemCatChem, 2019, 11(15): 3388-3392. doi:10.1002/cctc.201900901http://dx.doi.org/10.1002/cctc.201900901
Liu W, Tian G Q, Yang D D, Wu G, Chen S C, Wang Y Z. Polym Chem, 2019, 10(12): 1526-1536. doi:10.1039/c9py00111ehttp://dx.doi.org/10.1039/c9py00111e
0
浏览量
134
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构