浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料国家重点实验室 成都 610065
E-mail: yhniu@scu.edu.cn
hyj@scu.edu.cn
纸质出版日期:2022-01-20,
网络出版日期:2021-10-21,
收稿日期:2021-06-01,
修回日期:2021-08-20,
移动端阅览
李文泽,刘港,牛艳华等.基于聚乙二醇结构调控高分子量聚乳酸立构复合体系的结晶行为[J].高分子学报,2022,53(01):67-78.
Li Wen-ze,Liu Gang,Niu Yan-hua,et al.Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)[J].ACTA POLYMERICA SINICA,2022,53(01):67-78.
李文泽,刘港,牛艳华等.基于聚乙二醇结构调控高分子量聚乳酸立构复合体系的结晶行为[J].高分子学报,2022,53(01):67-78. DOI: 10.11777/j.issn1000-3304.2021.21164.
Li Wen-ze,Liu Gang,Niu Yan-hua,et al.Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)[J].ACTA POLYMERICA SINICA,2022,53(01):67-78. DOI: 10.11777/j.issn1000-3304.2021.21164.
设计合成了梳形聚(聚乙二醇甲醚丙烯酸酯)(PPEGA)及其与聚乙二醇(PEG)的嵌段共聚物(PEG-
b
-PPEGA). 通过与高分子量左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)共混探究了PEG不同的结构对PLA立构复合体系(sc-PLA)结晶的影响. 结果表明线形PEGA和PEG能与sc-PLA完全相容,两者均能促进立构复合晶(SCs)的形成,但会降低单手性晶体(HCs)的结晶度. 梳形PPEGA和sc-PLA相容性不佳,但其相容的支链PEGA可通过局部界面相互作用促进HCs和SCs的形成,且对SCs片层增厚影响明显,导致更高熔点的SCs. PEG-
b
-PPEGA嵌段共聚物可促进PPEGA与PLA的相容,但结晶过程中PPEGA会逆向影响PEG与PLA分子链间的相互作用,因而PEG和PPEGA协同促进结晶的效果不明显.
We designed and synthesized comb-like block copolymer poly[poly(ethylene glycol) methyl ether acrylate
]
(PPEGA) and poly(ethylene glycol)-
b
-PPEGA (PEG-
b
-PPEGA). By mixing with the high-molecular-weight poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) blends
the effect of various PEG structures on the crystallization of PLA stereocomplex system (sc-PLA) was explored. The results measured from optical microscopy (OM) show that homopolymer PEGA and PEG and copolymer PEG-
b
-PPEGA are completely miscible with sc-PLA
whereas PPEGA is immiscible. The
non-isothermal and isothermal crystallization data for all these blends by means of differential scanning calorimetry (DSC) indicate that both PEGA and PEG could promote the formation of stereocomplex crystallites (SCs)
but reduce the crystallinity of homochiral crystallites (HCs). However
introducing PPEGA and PEG-
b
-PPEGA could simultaneously enhance the crystallinity of HCs and SCs. Besides
the melting points of SCs in sc-PLA/PPEGA and sc-PLA/PEG-
b
-PPEGA blends increase with the increasing content of these two copolymers. These might be ascribed to the local interfacial interactions between PLA and the branched-chains PEGA. From polarized optical microscopy (POM)
we could find that the introduction of these four polymers could significantly increase the spherulitic growth rates but reduce the number of nuclei
indicating that the mobility of PLA chains play a key role on the increased crystallinity of SCs. X-ray analysis further revealed that miscible PEGA could induce higher long spacing of SCs in sc-PLA/PEGA blends than that in sc-PLA/PPEGA blends and comb-like PPEGA has a significant impact on the thickening of SCs
resulting in a higher melting point of SCs. In addition
although the block copolymer PEG-
b
-PPEGA formed by PEG and PPEGA promotes the miscibility of PPEGA with PLA
PPEGA would adversely affect the interaction between PEG and PLA molecular chains during crystallization
and thus the synergistic effect of PEG and PPEGA on promoting crystallization is weakened.
聚乙二醇聚乳酸立构复合结晶
Poly(ethylene glycol)Poly(lactic acid)StereocomplexCrystallization
Ikada Y, Jamshidi K, Tsuji H, Hyon S. Macromolecules, 1987, 20(4): 904-906. doi:10.1021/ma00170a034http://dx.doi.org/10.1021/ma00170a034
Liu Y L, Shao J, Sun J R, Bian X C, Feng L D, Xiang S, Sun B, Chen Z M, Li G, Chen X S. Polym Degrad Stabil, 2014, 101: 10-17. doi:10.1016/j.polymdegradstab.2014.01.023http://dx.doi.org/10.1016/j.polymdegradstab.2014.01.023
Zhang X W, Nakagawa R, Chan K H K, Kotaki M. Macromolecules, 2012, 45(13): 5494-5500. doi:10.1021/ma300289zhttp://dx.doi.org/10.1021/ma300289z
Xu H, Teng C, Yu M. Polymer, 2006, 47(11): 3922-3928. doi:10.1016/j.polymer.2006.03.090http://dx.doi.org/10.1016/j.polymer.2006.03.090
Tsuji H. Biomaterials, 2003, 24(4): 537-547. doi:10.1016/s0142-9612(02)00365-4http://dx.doi.org/10.1016/s0142-9612(02)00365-4
Tsuji H, Horii F, Hyon S, Ikada Y. Macromolecules, 1991, 24(10): 2719-2724. doi:10.1021/ma00010a013http://dx.doi.org/10.1021/ma00010a013
Tsuji H, Hyon S, Ikada Y. Macromolecules, 1991, 24(20): 5657-5662. doi:10.1021/ma00020a027http://dx.doi.org/10.1021/ma00020a027
Tsuji H, Ikada Y. Polymer, 1999, 40(24): 6699-6708. doi:10.1016/s0032-3861(99)00004-xhttp://dx.doi.org/10.1016/s0032-3861(99)00004-x
Wang Gang(王刚), Wang Ke(王柯). Acta Polymerica Sinica(高分子学报), 2018, (9): 1221-1227. doi:10.14133/j.cnki.1008-9357.20180130001http://dx.doi.org/10.14133/j.cnki.1008-9357.20180130001
Sun J R, Yu H Y, Zhuang X L, Chen X S, Jing X B. J Phys Chem B, 2011, 115(12): 2864-2869. doi:10.1021/jp111894mhttp://dx.doi.org/10.1021/jp111894m
Tsuji H, Ikada Y. Macromolecules, 1993, 26(25): 6918-6926. doi:10.1021/ma00077a032http://dx.doi.org/10.1021/ma00077a032
Maillard D, Prud'homme R E. Macromolecules, 2010, 43(9): 4006-4010. doi:10.1021/ma902625phttp://dx.doi.org/10.1021/ma902625p
Bai J, Wang J Y, Wang W T, Fang H G, Xu Z H, Chen X S, Wang Z G. ACS Sustain Chem Eng, 2016, 4(1): 273-283. doi:10.1021/acssuschemeng.5b01110http://dx.doi.org/10.1021/acssuschemeng.5b01110
Bao R Y, Yang W, Wei X F, Xie B H, Yang M B. ACS Sustain Chem Eng, 2014, 2(10): 2301-2309. doi:10.1021/sc500464chttp://dx.doi.org/10.1021/sc500464c
Xie Q, Guo G, Lu W W, Sun C X, Zhou J, Zheng Y, Shan G R, Bao Y Z, Pan P J. Polymer, 2020, (201): 122597. doi:10.1016/j.polymer.2020.122597http://dx.doi.org/10.1016/j.polymer.2020.122597
Bao J N, Xue X J, Li K, Chang X H, Xie Q, Yu C T, Pan P J. J Phys Chem B, 2017, 121(28): 6934-6943. doi:10.1021/acs.jpcb.7b03287http://dx.doi.org/10.1021/acs.jpcb.7b03287
Pan P J, Bao J N, Han L L, Xie Q, Shan G R, Bao Y Z. Polymer, 2016, 98: 80-87. doi:10.1016/j.polymer.2016.06.014http://dx.doi.org/10.1016/j.polymer.2016.06.014
Han L, Shan G, Bao Y, Pan P. J Phys Chem B, 2015, 119(44): 14270-14279. doi:10.1021/acs.jpcb.5b06757http://dx.doi.org/10.1021/acs.jpcb.5b06757
Purnama P, Jung Y, Kim S H. Macromolecules, 2012: 4012-4014. doi:10.1021/ma202814chttp://dx.doi.org/10.1021/ma202814c
Han L L, Yu C T, Zhou J, Shan G R, Bao Y Z, Yun X Y, Dong T, Pan P J. Polymer, 2016, 103: 376-386. doi:10.1016/j.polymer.2016.09.073http://dx.doi.org/10.1016/j.polymer.2016.09.073
Li W, Wang M, Luo H, Niu Y, Huang Y, Li G. Polymer, 2021, 218: 123519. doi:10.1016/j.polymer.2021.123519http://dx.doi.org/10.1016/j.polymer.2021.123519
Zhang Y Q, Xu Z H, Wang Z K, Ding Y S, Wang Z G. RSC Adv, 2014, 4(39): 20582-20591. doi:10.1039/c4ra02167chttp://dx.doi.org/10.1039/c4ra02167c
Chen Y, Zhang Y Q, Jiang F, Wang J Y, Xu Z H, Wang Z G. Sci China Chem, 2016, 59(5): 609-618. doi:10.1007/s11426-015-5515-6http://dx.doi.org/10.1007/s11426-015-5515-6
Lauritzen J I, Hoffman J D. J Appl Phys, 1973, 44(10): 4340-4352. doi:10.1063/1.1661962http://dx.doi.org/10.1063/1.1661962
Hoffman J D, Miller R L. Polymer, 1997, 38(13): 3151-3212. doi:10.1016/s0032-3861(97)00071-2http://dx.doi.org/10.1016/s0032-3861(97)00071-2
Tsuji H, Ikada Y. Macromol Chem Phys, 1996, 197(10): 3483-3499. doi:10.1002/macp.1996.021971033http://dx.doi.org/10.1002/macp.1996.021971033
Na B, Zhu J, Lv R, Ju Y, Tian R, Chen B. Macromolecules, 2014, 47(1): 347-352. doi:10.1021/ma402405chttp://dx.doi.org/10.1021/ma402405c
Strobl G. Rev Mod Phys, 2009, 81(3): 1287-1300. doi:10.1103/revmodphys.81.1287http://dx.doi.org/10.1103/revmodphys.81.1287
0
浏览量
141
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构