浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 电分析化学国家重点实验室 长春 130022
[ "李冰凌,女,1982年生. 2004年于东北师范大学获得理学学士学位;2010年于中国科学院长春应用化学研究所获得理学博士学位,导师为董绍俊研究员. 2010~2015年于美国得州大学奥斯汀分校细胞和分子生物研究所从事博士后研究,导师为Andrew D. Ellington教授. 2015年4月起任中国科学院长春应用化学研究所研究员,现任中国医药生物技术协会生物诊断技术分会第三届委员会常委和《分析化学》青年编委. 主要从事核酸分子工程、重大疾病和传染病便携化诊断和单分子测量方面的基础和应用研究." ]
纸质出版日期:2022-01-20,
网络出版日期:2021-10-22,
收稿日期:2021-06-02,
修回日期:2021-08-05,
移动端阅览
祝振童,吴瑞萍,李冰凌.固相纳米孔对核酸组装的“免标记、均相”表征和应用探索[J].高分子学报,2022,53(01):4-14.
Zhu Zhen-tong,Wu Rui-ping,Li Bing-ling.Characterization and Application Exploration of Solid-state Nanopores for Label-free and Homogeneous Analysis of Nucleic Acid Assembly[J].ACTA POLYMERICA SINICA,2022,53(01):4-14.
祝振童,吴瑞萍,李冰凌.固相纳米孔对核酸组装的“免标记、均相”表征和应用探索[J].高分子学报,2022,53(01):4-14. DOI: 10.11777/j.issn1000-3304.2021.21165.
Zhu Zhen-tong,Wu Rui-ping,Li Bing-ling.Characterization and Application Exploration of Solid-state Nanopores for Label-free and Homogeneous Analysis of Nucleic Acid Assembly[J].ACTA POLYMERICA SINICA,2022,53(01):4-14. DOI: 10.11777/j.issn1000-3304.2021.21165.
随着核酸自组装领域的飞速发展,除了作为遗传信息的载体外,核酸成为了一种具有高操作自由度和无限可能性的功能材料. 基于核酸自组装原理的DNA纳米技术凭借其强大的可编辑性已经广泛应用于生物传感、纳米材料工程、医学诊疗以及分子计算机等领域. 纳米孔作为一种新兴的单分子分析技术具有高分辨、高通量、免标记等特点,近年来在基因测序、分子物理化学性质分析等领域展示出了极大的应用潜力. 作为一种新型高分辨表征技术,纳米孔已经在DNA纳米技术研究中崭露头角,被用于原位追踪和分析核酸分子的自组装行为. 另一方面,DNA纳米技术也为纳米孔传感所面临的技术瓶颈提供了更多样化的解决思路,如借助功能核酸(Aptamer或DNAzyme)和无酶扩增核酸分子线路实现纳米孔对待测物的特异性增敏检测. 本专论旨在通过对近期纳米孔技术与核酸自组装的跨领域研究成果进行系统性回顾,总结并展望纳米孔传感领域内核酸自组装的研究进展,以期为单分子生物分析、信息检索、基因分型和临床诊断等领域提供新思路和新方法.
With the rapid development of the field of nucleic acid self-assembly
DNA becomes a functional and programmable material with high degree of free operation and unlimited possibilities. DNA nanotechnology based on various assembly principles has been widely used in biosensing
nanomaterial engineering
medical diagnosis and molecular computers. Nanopore analysis is an emerging
very effective single molecular technique for gene sequencing
molecular identification
and physical/chemical property characterization. Recently
due to the unique advantages such as high resolution
high throughput and label-free signalling
nanopore also raises increasing attention in the research of DNA nanotechnology
and has been explored as a new analytical method for various nucleic acid recognition and self-assembly behaviors. Meanwhile
DNA nanotechnology also provides more diversified solutions to the technical bottleneck of nanopore sensing
such as using functional nucleic acids (Aptamer or DNAzyme) and enzyme-free nucleic acid circuits to enhance detection sensitivity and specificity. This monograph systematically reviews these cross-field research progresses of nanopore technology and nucleic acid self-assemblies
which aims to summarize and prospect relevant new ideas and methods for single-molecule molecular analysis
information index
genotyping and clinical diagnosis.
固相纳米孔核酸纳米结构核酸分子线路免标记表征
Soild-state nanoporeNucleic acid nanostructureNucleic acid circuitsLabel-free characterization
Dekker C. Nat Nanotechnol, 2007, 2(4): 209-215. doi:10.1038/nnano.2007.27http://dx.doi.org/10.1038/nnano.2007.27
Howorka S, Siwy Z. Chem Soc Rev, 2009, 38(8): 2360-2384. doi:10.1039/b813796jhttp://dx.doi.org/10.1039/b813796j
Yu R, Ying Y, Gao R, Long Y. Angew Chem Int Ed, 2019, 58(12): 3706-3714. doi:10.1002/anie.201803229http://dx.doi.org/10.1002/anie.201803229
Ying Y, Long Y. J Am Chem Soc, 2019, 141(40): 15720-15729. doi:10.1021/jacs.8b11970http://dx.doi.org/10.1021/jacs.8b11970
Kasianowicz J J, Brandin E, Branton D, Deamer D W. Proc Natl Acad Sci USA, 1996, 93(24): 13770-13773. doi:10.1073/pnas.93.24.13770http://dx.doi.org/10.1073/pnas.93.24.13770
Branton D, Deamer D W, Marziali A, Bayley H, Benner S A, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X. Nat Biotechnol, 2008, 26(10): 1146-1153. doi:10.1038/nbt.1495http://dx.doi.org/10.1038/nbt.1495
Liu L, Wu H. Angew Chem Int Ed, 2016, 55(49): 15216-15222. doi:10.1002/anie.201604405http://dx.doi.org/10.1002/anie.201604405
Cao C, Ying Y, Hu Z, Liao D, Tian H, Long Y. Nat Nanotechnol, 2016, 11(8): 713-718. doi:10.1038/nnano.2016.66http://dx.doi.org/10.1038/nnano.2016.66
Li J, Stein D, McMullan C, Branton D, Aziz M J, Golovchenko J A. Nature, 2001, 412(6843): 166-169. doi:10.1038/35084037http://dx.doi.org/10.1038/35084037
Zhang S, Li M, Su B, Shao Y. Annu Rev Anal Chem, 2018, 11(1): 265-286. doi:10.1146/annurev-anchem-061417-125840http://dx.doi.org/10.1146/annurev-anchem-061417-125840
Hou X, Guo W, Jiang L. Chem Soc Rev, 2011, 40(5): 2385-2401. doi:10.1039/c0cs00053ahttp://dx.doi.org/10.1039/c0cs00053a
Lee K, Park K B, Kim H J, Yu J S, Chae H, Kim H M, Kim K B. Adv Mater, 2018, 30(42): 1704680. doi:10.1002/adma.201704680http://dx.doi.org/10.1002/adma.201704680
Ma Q, Si Z, Li Y, Wang D, Wu X, Gao P, Xia F. TrAC Trend Anal Chem, 2019, 115: 174-186. doi:10.1016/j.trac.2019.04.014http://dx.doi.org/10.1016/j.trac.2019.04.014
Miles B N, Ivanov A P, Wilson K A, Doğan F, Japrung D, Edel J B. Chem Soc Rev, 2013, 42(1): 15-28. doi:10.1039/c2cs35286ahttp://dx.doi.org/10.1039/c2cs35286a
Fragasso A, Schmid S, Dekker C. ACS Nano, 2020, 14(2): 338-1349. doi:10.1021/acsnano.9b09353http://dx.doi.org/10.1021/acsnano.9b09353
Howorka S. Nat Nanotechnol, 2017, 12(7): 619-630. doi:10.1038/nnano.2017.99http://dx.doi.org/10.1038/nnano.2017.99
Gao P, Ma Q, Ding D, Wang D, Lou X, Zhai T, Xia F. Nat Commun, 2018, 9: 4557. doi:10.1038/s41467-018-06873-zhttp://dx.doi.org/10.1038/s41467-018-06873-z
Ren R, Zhang Y, Nadappuram B P, Akpinar B, Klenerman D, Ivanov A P, Edel J B, Korchev Y. Nat Commun, 2017, 8: 586. doi:10.1038/s41467-017-00549-whttp://dx.doi.org/10.1038/s41467-017-00549-w
Wei R, Martin T G, Rant U, Dietz H. Angew Chem Int Ed, 2012, 51(20): 4864-4867. doi:10.1002/anie.201200688http://dx.doi.org/10.1002/anie.201200688
Ding T, Yang J, Pan V, Zhao N, Lu Z, Ke Y, Zhang C. Nucleic Acids Res, 2020, 48(6): 2791-2806. doi:10.1093/nar/gkaa095http://dx.doi.org/10.1093/nar/gkaa095
Sharma R K, Agrawal I, Dai L, Doyle P S, Garaj. Nat Commun, 2019, 10: 4473. doi:10.1038/s41467-019-12358-4http://dx.doi.org/10.1038/s41467-019-12358-4
Plesa C, Verschueren D, Pud S, van der Torre J, Ruitenberg J W, Witteveen M J, Jonsson M P, Grosberg A Y, Rabin Y, Dekker C. Nat Nanotechnol, 2016, 11(12): 1093-1097. doi:10.1038/nnano.2016.153http://dx.doi.org/10.1038/nnano.2016.153
Stein D M, McMullan C J, Li J, Golovchenko J A. Rev Sci Instrum, 2004, 75(4): 900-905. doi:10.1063/1.1666986http://dx.doi.org/10.1063/1.1666986
Siwy Z, Apel P, Baur D, Dobrev D D, Korchev Y E, Neumann R, Spohr R, Trautmann C, Voss K O. Surf Sci, 2003, 532: 1061-1066. doi:10.1016/s0039-6028(03)00448-5http://dx.doi.org/10.1016/s0039-6028(03)00448-5
Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z, Johnson A T C, Drndić M. Nano Lett, 2010, 10(8): 2915-2921. doi:10.1021/nl101046thttp://dx.doi.org/10.1021/nl101046t
Liu K, Feng J, Kis A, Radenovic A. ACS Nano, 2014, 8(3): 2504-2511. doi:10.1021/nn406102hhttp://dx.doi.org/10.1021/nn406102h
Liu S, Lu B, Zhao Q, Li J, Gao T, Chen Y, Zhang Y, Liu Z, Fan Z, Yang F. Adv Mater, 2013, 25(33): 4549-4554. doi:10.1002/adma.201301336http://dx.doi.org/10.1002/adma.201301336
Zhu Z, Duan X, Li Q, Wu R, Wang Y, Li B. J Am Chem Soc, 2020, 142(9): 4481-4492. doi:10.1021/jacs.0c00029http://dx.doi.org/10.1021/jacs.0c00029
Nadappuram B P, Cadinu P, Barik A, Ainscough A J, Devine M J, Kang M, Gonzalez-Garcia J, Kittler J T, Willison K R, Vilar R. Nat Nanotechnol, 2019, 14(1): 80-88. doi:10.1038/s41565-018-0315-8http://dx.doi.org/10.1038/s41565-018-0315-8
Göpfrich K, Li C Y, Ricci M, Bhamidimarri S P, Yoo J, Gyenes B, Ohmann A, Winterhalter M, Aksimentiev A, Keyser U F. ACS Nano, 2016, 10(9): 8207-8214. doi:10.1021/acsnano.6b03759http://dx.doi.org/10.1021/acsnano.6b03759
Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli L R, Allen F I., Shnyrova A V, Cho K R, Munoz D. Nature, 2014, 514(7524): 612-615. doi:10.1038/nature13817http://dx.doi.org/10.1038/nature13817
Lang C, Li W, Dong Z, Zhang X, Yang F, Yang B, Deng X, Zhang C, Xu J, Liu J. Angew Chem Int Ed, 2016, 55(33): 9723-9727. doi:10.1002/anie.201604071http://dx.doi.org/10.1002/anie.201604071
Sakai N, Mareda J, Matile S. Acc Chem Res, 2008, 41(10): 1354-1365. doi:10.1021/ar700229rhttp://dx.doi.org/10.1021/ar700229r
Zhao Y, Zuo X, Li Q, Chen F, Chen Y R, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu Z S, Xia F, Xu C, Yang Y, Yuan B F, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang X, Yang H, Tan W, Fan C. Sci China Chem, 2021, 64(2): 171-203. doi:10.1007/s11426-020-9864-7http://dx.doi.org/10.1007/s11426-020-9864-7
Madsen M, Gothelf K V. Chem Rev, 2019, 119(10): 6384-6458. doi:10.1021/acs.chemrev.8b00570http://dx.doi.org/10.1021/acs.chemrev.8b00570
Seeman N C, Sleiman H F. Nat Rev Mater, 2017, 3(1): 17068. doi:10.1038/natrevmats.2017.68http://dx.doi.org/10.1038/natrevmats.2017.68
Tan W, Donovan M J, Jiang J. Chem Rev, 2013, 113(4): 2842-2862. doi:10.1021/cr300468whttp://dx.doi.org/10.1021/cr300468w
Dunn M R, Jimenez R M, Chaput J C. Nat Rev Chem, 2017, 1(10): 76. doi:10.1038/s41570-017-0076http://dx.doi.org/10.1038/s41570-017-0076
Sun H, Tan W, Zu Y. Analyst, 2016, 141: 403-415. doi:10.1039/c5an01995hhttp://dx.doi.org/10.1039/c5an01995h
Zhou W, Saran R, Liu J. Chem Rev, 2017, 117(12): 8272-8325. doi:10.1021/acs.chemrev.7b00063http://dx.doi.org/10.1021/acs.chemrev.7b00063
Liu M, Chang D, Li Y. Acc Chem Res, 2017, 50(9): 2273-2283. doi:10.1021/acs.accounts.7b00262http://dx.doi.org/10.1021/acs.accounts.7b00262
Wilner O I, Willner I. Chem Rev, 2012, 112(4): 2528-2556. doi:10.1021/cr200104qhttp://dx.doi.org/10.1021/cr200104q
Kallenbach N R, Ma R I, Seeman N C. Nature, 1983, 305(5937): 829-831. doi:10.1038/305829a0http://dx.doi.org/10.1038/305829a0
Wang W, Yu S, Huang S, Bi.S, Han H, Zhang J R, Lu Y, Zhu J J. Chem Soc Rev, 2019, 48: 4892-4920. doi:10.1039/c8cs00402ahttp://dx.doi.org/10.1039/c8cs00402a
Yurke B, Turberfield A J, Mills A P, Simmel F C, Neumann J L. Nature, 2000, 406(6796): 605-608. doi:10.1038/35020524http://dx.doi.org/10.1038/35020524
Zhang D, Winfree E. J Am Chem Soc, 2009, 131(47): 17303-17314. doi:10.1021/ja906987shttp://dx.doi.org/10.1021/ja906987s
Dirks R M, Pierce N A. P Natl Acad Sci USA, 2004, 101(43) 15275-15278. doi:10.1073/pnas.0407024101http://dx.doi.org/10.1073/pnas.0407024101
Bi S, Yue S, Zhang S. Chem Soc Rev, 2017, 46(14): 4281-4298. doi:10.1039/c7cs00055chttp://dx.doi.org/10.1039/c7cs00055c
Zhang D Y, Turberfield A J, Yurke B, Winfree E. Science, 2007, 318(5853): 1121-1125. doi:10.1126/science.1148532http://dx.doi.org/10.1126/science.1148532
Yin P, Choi H M, Calvert C R, Pierce N A. Nature, 2008, 451(7176): 318-322. doi:10.1038/nature06451http://dx.doi.org/10.1038/nature06451
Li B, Ellington A D, Chen X. Nucleic Acids Res, 2011, 39(16): e110. doi:10.1093/nar/gkr504http://dx.doi.org/10.1093/nar/gkr504
Tang Y, Lu B, Zhu Z, Li B. Chem Sci, 2018, 9(3): 760-769. doi:10.1039/c7sc03190dhttp://dx.doi.org/10.1039/c7sc03190d
Zhu Z, Tang Y, Jiang Y S, Bhadra S, Du Y, Ellington A D, Li B. Sci Rep UK, 2016, 6: 36005. doi:10.1038/srep36605http://dx.doi.org/10.1038/srep36605
Bell N A, Chen K, Ghosal S, Ricci M, Keyser U F. Nat Commun, 2017, 8: 380. doi:10.1038/s41467-017-00423-9http://dx.doi.org/10.1038/s41467-017-00423-9
Alibakhshi M, Halman J, Wilson J, Aksimentiev A, Afonin K, Wanunu M. ACS Nano, 2017, 11(10): 9701-9710. doi:10.1021/acsnano.7b04923http://dx.doi.org/10.1021/acsnano.7b04923
Zhu Z, Zhou Y, Xu X, Wu R, Jin Y, Li B. Anal Chem, 2018, 90(1): 814-820. doi:10.1021/acs.analchem.7b03442http://dx.doi.org/10.1021/acs.analchem.7b03442
Zhou Y, Wu R, Wang D, Hu P, Jin Y. ACS Sensors, 2019, 4(12): 3119-3123. doi:10.1021/acssensors.9b01880http://dx.doi.org/10.1021/acssensors.9b01880
Zhu Z, Wu R, Li B. Chem Sci, 2019, 10(7): 1953-1961. doi:10.1039/c8sc04875dhttp://dx.doi.org/10.1039/c8sc04875d
Fologea D, Gershow M, Ledden B, McNabb D S, Golovchenko J A, Li J. Nano Lett, 2005, 5(10): 1905-1909. doi:10.1021/nl051199mhttp://dx.doi.org/10.1021/nl051199m
Wang L, Zhu Z, Li B, Shao, F. ACS Appl Bio Mater, 2019, 2: 1278-1285. doi:10.1109/TVCG.2019.2963015http://dx.doi.org/10.1109/TVCG.2019.2963015
Zhu L, Xu Y, Ali I, Liu L, Wu H, Lu Z, Liu Q. ACS Appl Mater Interfaces, 2018, 10(31): 26555-26565. doi:10.1021/acsami.8b09505http://dx.doi.org/10.1021/acsami.8b09505
Wu R, Zhu Z, Xu X, Yu C, Li B. Nanoscale, 2019, 11(21): 10339-10347. doi:10.1039/c9nr01666jhttp://dx.doi.org/10.1039/c9nr01666j
Wu R, Wang Y, Zhu Z, Yu C, Li H, Li B, Dong S. ACS Appl Mater Interfaces, 2021, 13(8): 9482-9490. doi:10.1021/acsami.0c20359http://dx.doi.org/10.1021/acsami.0c20359
Bell N A W, Keyser U F. J Am Chem Soc, 2015, 137(5): 2035-2041. doi:10.1021/ja512521whttp://dx.doi.org/10.1021/ja512521w
Chen K, Kong J, Zhu J, Ermann N, Predki P, Keyser U F. Nano Lett, 2019, 19(2): 1210-1215. doi:10.1021/acs.nanolett.8b04715http://dx.doi.org/10.1021/acs.nanolett.8b04715
Chen K, Gularek F, Liu B, Weinhold E, Keyser U F. ACS Nano, 2021, 15(2): 2679-2685. doi:10.1021/acsnano.0c07947http://dx.doi.org/10.1021/acsnano.0c07947
Chen K, Zhu J, Bošković F, Keyser U F. Nano Lett, 2020, 20(5): 3754-3760. doi:10.1021/acs.nanolett.0c00755http://dx.doi.org/10.1021/acs.nanolett.0c00755
Chen K, Juhasz M, Gularek F, Weinhold E, Tian Y, Keyser U F, Bell N A. Nano Lett, 2017, 17(9): 5199-5205. doi:10.1021/acs.nanolett.7b01009http://dx.doi.org/10.1021/acs.nanolett.7b01009
Misiunas K, Ermann N, Keyser U F. Nano Lett, 2018, 18(6): 4040-4045. doi:10.1021/acs.nanolett.8b01709http://dx.doi.org/10.1021/acs.nanolett.8b01709
Kawano R. Biotechenol J, 2018, 13(12): 1800091. doi:10.1002/biot.201800091http://dx.doi.org/10.1002/biot.201800091
0
浏览量
129
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构