浏览全部资源
扫码关注微信
东华大学纺织学院 纺织面料技术教育部重点实验室 纺织行业生物医用纺织材料与技术重点实验室 上海 201620
E-mail: jifu.mao@dhu.edu.cn
纸质出版日期:2022-01-20,
网络出版日期:2021-11-09,
收稿日期:2021-06-11,
修回日期:2021-09-09,
移动端阅览
高娅娅,李沂蒙,魏乐倩等.仿蠕虫状聚吡咯基复合纤维的构建及应变不敏感导电性能研究[J].高分子学报,2022,53(01):46-55.
Gao Ya-ya,Li Yi-meng,Wei Le-qian,et al.Construction and Strain-insensitive Performance of Worm-shaped Polypyrrole-based Composite Fiber with Elastic Wrinkles Structure[J].ACTA POLYMERICA SINICA,2022,53(01):46-55.
高娅娅,李沂蒙,魏乐倩等.仿蠕虫状聚吡咯基复合纤维的构建及应变不敏感导电性能研究[J].高分子学报,2022,53(01):46-55. DOI: 10.11777/j.issn1000-3304.2021.21168.
Gao Ya-ya,Li Yi-meng,Wei Le-qian,et al.Construction and Strain-insensitive Performance of Worm-shaped Polypyrrole-based Composite Fiber with Elastic Wrinkles Structure[J].ACTA POLYMERICA SINICA,2022,53(01):46-55. DOI: 10.11777/j.issn1000-3304.2021.21168.
采用表面改性、原位聚合和可控牵伸整理技术在弹性聚氨酯表面构建蠕虫状水性聚氨酯@聚吡咯弹性褶皱,开发了一种同时具备高拉伸导电稳定性和较小滞后性的应变不敏感导电纤维. 通过扫描电子显微镜、强力仪、红外光谱及系统源表等对纤维的微观形貌、表面成分、力学性能、应变不敏感性能以及循环稳定性等进行表征. 结果表明:该蠕虫状应变不敏感导电纤维不仅表现出优异的应变不敏感行为(在300%应变下的Δ
R
/
R
0
=1.88),最高可承受1500%的应变,而且在加载卸载300%循环时表现出较小的滞后性(0.03)和长期耐用性(
>
1000个拉伸-释放循环),这种智能材料在高拉伸电子学领域具有广阔的应用前景.
Highly stretchable and durable conductors are significant for the development of wearable devices
robots
human-machine interfaces
and other artificial intelligence products. However
high stretchability and small hysteresis are difficult to be attained for conventional conductive fibers
restricting their applications as stretchable electronics. In this work
a worm-inspired strain-insensitive conductive fiber with both outstanding strain-insensitive performance and small hysteresis was developed by combining surface modification
interfacial polymerization and modified pre-strain finishing to construct aqueous polyurethane@polypyrrole elastic wrinkles on an elastic multifilament. The microscopic morphology
surface composition
mechanical performance
strain-insensitive properties and durability of the composite fibers were characterized by scanning electron microscope (SEM)
electronic strength tester
infrared spectroscopy (FTIR) and SourceMeter. FTIR results suggested the successful attachment of DOPA and PPy coating. Thermogravimetric analysis (TGA) demonstrated that the loading capacity of PPy exhibited an obviously increasing trend from 1.49% of PU0@PPy fiber to 6.96% of PU300@PPy fiber
and they all exhibited excellent electrical conductivity fluctuating around 100 S·m
-1
. More importantly
such bionic stretchable conductive fiber wrapped with elastic wrinkles not only exhibited excellent strain-insensitive behavior (Δ
R
/
R
0
= 1.88) up to 300% strain but also revealed small hysteresis (0.03) after a stretching-releasing cycle and long-term durability (
>
1000 stretching-releasing cycle)
and it also exhibited a wonderful
Q
value (1.60) though it was in a state of high strain (300%) as compared to many recently reported stretchable conductors based on spirally structure
buckling structure
negative Poisson's ratio structure and so on. Accordingly
it can be applied to monitor the human body where it would undergo large deformations
such as finger joints
wrist and elbow. In addition
the resistance change of PU300@PPy fiber still kept within an order of magnitude after experiencing 200 cycles of soaping and 1000 times of strong friction. In a word
such biomimetic strain-insensitive conductive fiber holds great potential in the fields of highly stretchable electronics.
聚氨酯聚吡咯蠕虫状褶皱结构应变不敏感导电性能
PolyurethanePolypyrroleWorm-inspired wrinkle structureStrain-insensitive performance
Gao Y, Guo F Y, Cao P, Liu J C, Li D, Wu J, Wang N, Su Y W, Zhao Y. ACS Nano, 2020, 14: 3442-3450. doi:10.1021/acsnano.9b09533http://dx.doi.org/10.1021/acsnano.9b09533
Chen G, Wang H, Guo R, Duan M, Zhang Y, Liu J. ACS Appl Mater Interfaces, 2020, 12: 6112-6118. doi:10.1021/acsami.9b23083http://dx.doi.org/10.1021/acsami.9b23083
Liu Z, Fang S, Moura F A, Ding J, Jiang N, Di J, Zhang M, Lepró X, Galvão D S, Haines C S, Yuan N Y, Yin S G, Lee D W, Wang R, Wang H Y, Lv W, Dong C, Zhang R C, Chen M J, Yin Q, Chong Y T, Zhang R, Wang X, Lima M D. Science, 2015, 349(6246): 400-404. doi:10.1126/science.aaa7952http://dx.doi.org/10.1126/science.aaa7952
Cai G, Yang M, Pan J, Cheng D, Xia Z, Wang X, Tang B. ACS Appl Mater Interfaces, 2018, 10(38): 32726-32735. doi:10.1021/acsami.8b11885http://dx.doi.org/10.1021/acsami.8b11885
Wu X, Han Y, Zhang X, Lu C. ACS Appl Mater Interfaces, 2017, 9(27): 23007-23016. doi:10.1021/acsami.7b06256http://dx.doi.org/10.1021/acsami.7b06256
Won Y, Kim A, Yang W, Jeong S, Moon J. NPG Asia Mater, 2014, 6(9): e132. doi:10.1038/am.2014.88http://dx.doi.org/10.1038/am.2014.88
He Wenqian(何文倩), Zhou Xiang(周湘), Liu Zunfeng(刘遵峰). Acta Physica Sinica(物理学报), 2020, 69(17): 46-69. doi:10.7498/aps.69.20200632http://dx.doi.org/10.7498/aps.69.20200632
Cheng Y, Wang R, Chan K H, Lu X, Sun J, Ho G W. ACS Nano, 2018, 12(4): 3898-3907. doi:10.1021/acsnano.8b01372http://dx.doi.org/10.1021/acsnano.8b01372
Li Shasha(李莎莎), Hao Xiaogang(郝晓刚), Jia Jinlan(贾金兰), Hou Caiying(侯彩英), Guan Taotao(管涛涛), Wang Zhongde(王忠德). Acta Polymerica Sinica(高分子学报), 2017, (3): 524-533. doi:10.11777/j.issn1000-3304.2017.16148http://dx.doi.org/10.11777/j.issn1000-3304.2017.16148
Qi K, Zhou Y, Ou K, Dai Y, You X, Wang H, He J, Qin X, Wang R. Carbon, 2020, 170: 464-476. doi:10.1016/j.carbon.2020.07.042http://dx.doi.org/10.1016/j.carbon.2020.07.042
Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim M B, Jeon S, Chung D Y, Bae J, Park J, Jeong U, Kim K. Nat Nanotechnol, 2012, 7(12): 803-809. doi:10.1038/nnano.2012.206http://dx.doi.org/10.1038/nnano.2012.206
Woo J, Lee H, Yi C, Lee J, Won C, Oh S, Jekal J, Kwon C, Lee S, Song J, Choi B, Jang K I, Lee T. Adv Funct Mater, 2020, 30. doi:10.1002/adfm.202070198http://dx.doi.org/10.1002/adfm.202070198
Liang J J, Li L, Tong K, Ren Z, Hu W, Niu X F, Chen Y S, Pei Q B. ACS Nano, 2014, 8: 1590-1600. doi:10.1021/nn405887khttp://dx.doi.org/10.1021/nn405887k
Lee M S, Lee K, Kim S Y, Lee H, Park J, Choi K H, Kim H K, Kim D G, Lee D Y, Nam S, Park J U. Nano Lett, 2013, 13(6): 2814-2821. doi:10.1021/nl401070phttp://dx.doi.org/10.1021/nl401070p
Chen S, Liu H, Liu S, Wang P, Zeng S, Sun L, Liu L. ACS Appl Mater Interfaces, 2018, 10: 4305-4314. doi:10.1021/acsami.7b17790http://dx.doi.org/10.1021/acsami.7b17790
Kim A, Ahn J, Hwang H, Lee E, Moon J. Nanoscale, 2017, 9(18): 5773-5778. doi:10.1039/c7nr02116jhttp://dx.doi.org/10.1039/c7nr02116j
Yan S, Zhang G Z, Jiang H Y, Li F B, Zhang L, Xia Y H, Wang Z S, Wu Y K, Li H J. ACS Appl Mater Interfaces, 2019, 11(11): 10736-10744. doi:10.1021/acsami.9b00274http://dx.doi.org/10.1021/acsami.9b00274
Jang S, Kim C, Park J J, Jin M L, Kim S J, Park O O, Kim T S, Jung H T. Small, 2018, 14(8): 1702818. doi:10.1002/smll.201702818http://dx.doi.org/10.1002/smll.201702818
Yong K, De S, Hsieh E Y, Leem J, Aluru N R, Nam S. Mater Today, 2019, 34: 58-65. doi:10.1016/j.mattod.2019.08.013http://dx.doi.org/10.1016/j.mattod.2019.08.013
Zhang B, Lei J, Qi D P, Liu Z Y, Wang Y, Xiao G W, Wu J S, Zhang W N, Huo F W, Chen X D. Adv Funct Mater, 2018, 28(29). doi:10.1002/adfm.201801683http://dx.doi.org/10.1002/adfm.201801683
Dai Z, Weng C, Liu L, Hou Y, Zhao X, Kuang J, Shi J, Wei Y, Lou J, Zhang Z. Sci Rep, 2016, 6(1): 32989. doi:10.1038/srep32989http://dx.doi.org/10.1038/srep32989
Zangmeister R A, Morris T A, Tarlov M J. Langmuir, 2013, 29(27): 8619-8628. doi:10.1021/la400587jhttp://dx.doi.org/10.1021/la400587j
Song C, Zhang X Y, Wang L Y, Wen F, Xu K G, Xiong W R, Li C K, Li B Y, Wang Q, Xing M M Q, Qiu X Z. ACS Nano, 2019, 13(12): 14122-14137. doi:10.1021/acsnano.9b06761http://dx.doi.org/10.1021/acsnano.9b06761
Sun F, Tian M, Sun X, Xu T, Liu X, Zhu S, Zhang X, Qu L. Nano Lett, 2019, 19(9): 6592-6599. doi:10.1021/acs.nanolett.9b02862http://dx.doi.org/10.1021/acs.nanolett.9b02862
Li Yuntao(李运涛), Wang Taoqing(王涛庆), Ning Xutao(宁旭涛), Zhong Wenbin(钟文斌). Applied Chemical Industry(应用化工), 2011, 40(5): 799-803, 806
Lee P, Ham J, Lee J, Hong S, Han S, Suh Y D, Lee S E, Yeo J, Lee S S, Lee D, Ko S H. Adv Funct Mater, 2014, 24(36): 5671-5678. doi:10.1002/adfm.201400972http://dx.doi.org/10.1002/adfm.201400972
Chae C, Seo Y H, Jo Y, Kim K W, Song W, An K S, Choi S, Choi Y, Lee S S, Jeong S. ACS Appl Mater Interfaces, 2015, 7(7): 4109-4117. doi:10.1021/am5080634http://dx.doi.org/10.1021/am5080634
Huang Y, Yu B, Zhang L, Ning N, Tian M. ACS Appl Mater Interfaces, 2019, 11(51): 48321-48330. doi:10.1021/acsami.9b15776http://dx.doi.org/10.1021/acsami.9b15776
He Qingqing(何青青), Xu Hong(徐红), Mao Zhiping(毛志平), Zhang Linping(张琳萍), Zhong Yi(钟毅), Lv Jingchun(吕景春). Journal of Textile Research(纺织学报), 2019, 40(10): 113-119. doi:10.1016/j.cej.2018.12.083http://dx.doi.org/10.1016/j.cej.2018.12.083
0
浏览量
153
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构