浏览全部资源
扫码关注微信
1.宁波大学,材料科学与化学工程学院,宁波 315211
2.宁波大学,宁波特种高分子材料制备与应用技术重点实验室,宁波 315211
E-mail: sunwei@nbu.edu.cn
纸质出版日期:2022-01-20,
网络出版日期:2021-09-17,
收稿日期:2021-06-30,
修回日期:2021-08-09,
移动端阅览
崔鹏程,于涛,周楠等.有序/无序非对称型多层多孔结构的一步法制备研究[J].高分子学报,2022,53(01):37-45.
Cui Peng-cheng,Yu Tao,Zhou Nan,et al.One-step Fabrication of Multi-layered Porous Structure with Ordered/Disordered Asymmetry[J].ACTA POLYMERICA SINICA,2022,53(01):37-45.
崔鹏程,于涛,周楠等.有序/无序非对称型多层多孔结构的一步法制备研究[J].高分子学报,2022,53(01):37-45. DOI: 10.11777/j.issn1000-3304.2021.21177.
Cui Peng-cheng,Yu Tao,Zhou Nan,et al.One-step Fabrication of Multi-layered Porous Structure with Ordered/Disordered Asymmetry[J].ACTA POLYMERICA SINICA,2022,53(01):37-45. DOI: 10.11777/j.issn1000-3304.2021.21177.
反相乳液-水滴模板(Ie-BF)法被用以制备具有非对称多层多孔结构的聚合物薄膜. 具体来说,通过在高湿环境条件下浇筑以聚合物/三氯甲烷溶液为油相所制备的反相乳液,最终在所制备薄膜的表面层形成单层有序的蜂窝状BF多孔阵列结构,同时在本体层形成无序排布的多层多孔结构. 通过调节所浇筑乳液的组成以及Ie-BF法实施的条件,可以同时实现对表面层和本体层多孔结构(包括Ie-BF多孔结构的孔眼尺寸、尺寸分布、阵列有序度及多孔膜厚度)的有效调控. 通过在乳液水滴中加载异硫氰酸荧光素并对荧光素在Ie-BF薄膜分布进行跟踪表征,探究了乳液水滴的结构模板化作用和水溶性组分在Ie-BF薄膜内的组装行为.
Polymeric films with three-dimensional porous structures have various advantageous properties
such as high specific surface area and ultra-lightweight. Reasonable structural design could be used to achieve the regulation and functionalization of complex porous structures. As the expectation for the diversified and advanced applications of porous polymers rises
making porous structure with complicated 3D pore morphologies has become new challenge for researchers in this area. Inverse emulsion-breath figure (Ie-BF) method is utilized to fabricate polymeric thin films with asymmetric multi-layered micro-porous structures. By casting inverse emulsions under humid environmental condition
ordered honeycomb-structured BF pore array is formed on the top surface
while disordered porous structure with differently featured pore sizes and pore arrangement can be flexibly formed in the bulk layer. Dynamic morphological manipulation on the fabrication of porous structures (including pore size & size distribution
array regularity and bulk layer pore morphologies) is facilely achieved by tuning the composition of the casting emulsion as well as the environmental conditions. By loading fluorescein isothiocyanate within the emulsion droplets and tracking the distribution of fluorescein isothiocyanate within the obtained Ie-BF film
the structure templating process of the emulsion droplets and the assembling behavior of the hydrophilic component in the Ie-BF film were studied. The confocal laser scanning microscope (CLSM) results confirm that the emulsion droplets were the main origin of pore-formation in the bulk layer. Hydrophilic components can be loaded by the reverse emulsion droplets and assembled onto the porous array of the Ie-BF structures by the one-step Ie-BF method. The Ie-BF technique provides a way of 3D pore-formation within the matrix of polymeric film. The highly dynamic control on the sublayer pore morphologies of the Ie-BF films
ranging from nano-pores to micro-porous foam-like structure
is a promising feature for constructing an efficient platform for different applications.
反相乳液水滴模板法三维多孔非对称结构
Inverse emulsionBreath figure3D porous structureAsymmetric pore morphology
Li B Y, Huang X, Liang L, Tan B. J Mater Chem, 2010, 20(35): 7444-7450. doi:10.1039/c0jm01423khttp://dx.doi.org/10.1039/c0jm01423k
Côté A P, Benin A, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166-1170. doi:10.1002/ange.200504312http://dx.doi.org/10.1002/ange.200504312
Chen M, Zhang G, Gao Z, Hao J C, Zhou S J, Li H G. J Phys Chem C, 2018, 122(3): 4851-24862. doi:10.1021/acs.jpcc.8b08605http://dx.doi.org/10.1021/acs.jpcc.8b08605
Zheng B N, Lin X D, Zhang X C, Wu D C, Matyjaszewski K. Adv Funct Mater, 2019, 31: 1907006. doi:10.1002/adfm.201907006http://dx.doi.org/10.1002/adfm.201907006
Pierre S J, Thies J C, Dureault A, Cameron N R, van Hest J C M, Carette N, Michon T, Weberskirch R. Adv Mater, 2006, 18(14): 1822-1826. doi:10.1002/adma.200600293http://dx.doi.org/10.1002/adma.200600293
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. J Control Release, 2014, 185: 12-21. doi:10.1016/j.jconrel.2014.04.018http://dx.doi.org/10.1016/j.jconrel.2014.04.018
Liu Y N, Su Y L, Guan J Y, Cao J L, Zhang R N, He M R, Jiang Z Y. ACS Appl Mater Interfaces, 2018, 10(31): 26546-26554. doi:10.1021/acsami.8b09362http://dx.doi.org/10.1021/acsami.8b09362
Mandal J, Fu Y, Overvig A C, Jia M X, Sun K R, Shi N N, Zhou H, Xiao X H, Yu N F, Yang Y. Science, 2018, 362(6412): 315-319. doi:10.1126/science.aat9513http://dx.doi.org/10.1126/science.aat9513
Anoshkin V I, Campion J, Lioubtchenko V, Oberhammer J. ACS Appl Mater Interfaces, 2018, 10(23): 19806-19811. doi:10.1021/acsami.8b03983http://dx.doi.org/10.1021/acsami.8b03983
Jiang Y, Kim D. Chem Eng J, 2013, 232: 503-509. doi:10.1016/j.cej.2013.08.008http://dx.doi.org/10.1016/j.cej.2013.08.008
Estevez L, Prabhakaran V, Garcia A L, Shin Y, Tao J H, Schwarz A M, Darsell J, Bhattacharya P, Shutthanandan V, Zhang J G. ACS Nano, 2017, 11(11): 11047-11055. doi:10.1021/acsnano.7b05085http://dx.doi.org/10.1021/acsnano.7b05085
Chen X, Song X, Huang J, Wu C D, Ma D S, Tian M Z, Jiang H, Huang P. Energy Fuels, 2017, 31(12): 13439-13447. doi:10.1021/acs.energyfuels.7b02672http://dx.doi.org/10.1021/acs.energyfuels.7b02672
Nunes S P, Karunakaran M, Pradeep N, Behzad A R, Hooghan B, Sougrat R, He H Z, Peinemann K V. Langmuir, 2011, 27(16): 10184-10190. doi:10.1021/la201439phttp://dx.doi.org/10.1021/la201439p
Huang T F, Manchanda P, Zhang L W, Shekhah O, Khashab N M, Eddaoudi M, Peinemann K V. J Membr Sci, 2019, 584: 1-8. doi:10.1016/j.memsci.2019.04.039http://dx.doi.org/10.1016/j.memsci.2019.04.039
Wu D C, Xu F, Sun B, Fu R W, He H K, Matyjaszewski K. Chem Rev, 2012, 112: 3959-4015. doi:10.1021/cr200440zhttp://dx.doi.org/10.1021/cr200440z
Widawski G, Rawiso M, François B. Nature, 1994, 369: 387-389. doi:10.1038/369387a0http://dx.doi.org/10.1038/369387a0
Zhou Y C, Huang J J, Sun W, Ju Y L, Yang P H, Ding L Y, Chen Z R, Kornfield J A. ACS Appl Mater Interfaces, 2017, 9(4): 4177-4183. doi:10.1021/acsami.6b13525http://dx.doi.org/10.1021/acsami.6b13525
Yin Z Y, Zhou Y C, Cui P C, Liao J H, Rafailovich M H, Sun W. Chem Commun, 2020, 56(35): 4808-4811. doi:10.1039/d0cc00942chttp://dx.doi.org/10.1039/d0cc00942c
Huang J J, Zhu J F, Sun W, Ji J. ACS Appl Mater Interfaces, 2020, 12(41): 47048-47058. doi:10.1021/acsami.0c14614http://dx.doi.org/10.1021/acsami.0c14614
Srinivasarao M. Science, 2001, 292: 79-83. doi:10.1126/science.1057887http://dx.doi.org/10.1126/science.1057887
Muñoz-Bonilla A, Fernández-García M, Rodríguez-Hernández J. Prog Polym Sci, 2014, 39(3): 510-554. doi:10.1016/j.progpolymsci.2013.08.006http://dx.doi.org/10.1016/j.progpolymsci.2013.08.006
Vargas-Alfredo N, Dorronsoro A, Cortajarena A L, Rodríguez-Hernández J. ACS Appl Mater Interfaces, 2017, 9(42): 37454-37462. doi:10.1021/acsami.7b11947http://dx.doi.org/10.1021/acsami.7b11947
Zhang A J, Du C, Bai H, Wang Y G, Wang J W, Li L. ACS Appl Mater Interfaces, 2014, 6(11): 8921-8927. doi:10.1021/am5016952http://dx.doi.org/10.1021/am5016952
Ding L Y, Sun W, Ju Y L, Cui P C, Wang S Y, Huang J J, Zhou W R, Zhu J F. Macromol Chem Phys, 2018, 219(6): 1700500. doi:10.1002/macp.201700500http://dx.doi.org/10.1002/macp.201700500
Ju Y L, Ding L Y, Zhu J F, Sun W. J Appl Polym Sci, 2019, 136(8): 47084. doi:10.1002/app.47084http://dx.doi.org/10.1002/app.47084
Ding Lingyun(丁凌云), Ju Yuanlai(鞠远来), Sun Wei(孙巍), Chen Ji(陈吉). Chemical Research in Chinese Universities(高等学校化学学报), 2018, 39(6): 1311-1318. doi:10.7503/cjcu20170742http://dx.doi.org/10.7503/cjcu20170742
Cui P C, Wu S L, Xie J, Ma J Y, Ding L Y, Olasoju O S, Cao Y J, Li Y Q, Shen L Y, Sun W. Chem Commun, 2021, 57(54): 6620-6623. doi:10.1039/d1cc02450ghttp://dx.doi.org/10.1039/d1cc02450g
Wan L S, Zhu L W, Ou Y, Xu Z K. Chem Commun, 2014, 50(84): 4024-4039. doi:10.1039/c3cc49826chttp://dx.doi.org/10.1039/c3cc49826c
Zhang A J, Bai H, Li L. Chem Rev, 2015, 115(18): 9801-9868. doi:10.1021/acs.chemrev.5b00069http://dx.doi.org/10.1021/acs.chemrev.5b00069
Raman A P, Anoma M A, Zhu L X, Rephaeli E, Fan S H. Nature, 2014, 515(7528): 540-544. doi:10.1038/nature13883http://dx.doi.org/10.1038/nature13883
Su Y W, Dang J, Zhang H T. Langmuir, 2017, 33(30): 7393-7402. doi:10.1021/acs.langmuir.7b01502http://dx.doi.org/10.1021/acs.langmuir.7b01502
Poupart R, Benlahoues A, Droumaguet B L, Grande D. ACS Appl Mater Interfaces, 2017, 9(37): 31279-31290. doi:10.1021/acsami.6b16157http://dx.doi.org/10.1021/acsami.6b16157
0
浏览量
122
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构