浏览全部资源
扫码关注微信
1.中国石化北京化工研究院 北京 100013
2.北京大学化学与分子工程学院 北京 100871
[ "梁德海,男,1971年生. 1994年获南开大学环境科学系理学学士,同年进入南开大学化学系攻读硕士. 2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后. 2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年任教授. 2011年得到教育部新世纪优秀人才计划的支持,2015获得Elsevier第九届冯新德高分子奖最佳文章奖. 研究方向为高分子溶液物理,主要项目包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究." ]
纸质出版日期:2022-01-20,
网络出版日期:2021-11-20,
收稿日期:2021-07-06,
修回日期:2021-08-26,
移动端阅览
郑萃,刘芷君,梁德海.光散射技术在高分子表征研究中的应用[J].高分子学报,2022,53(01):90-106.
Zheng Cui,Liu Zhi-jun,Liang De-hai.Laser Light Scattering and Its Applications in Polymer Characterization[J].ACTA POLYMERICA SINICA,2022,53(01):90-106.
郑萃,刘芷君,梁德海.光散射技术在高分子表征研究中的应用[J].高分子学报,2022,53(01):90-106. DOI: 10.11777/j.issn1000-3304.2021.21184.
Zheng Cui,Liu Zhi-jun,Liang De-hai.Laser Light Scattering and Its Applications in Polymer Characterization[J].ACTA POLYMERICA SINICA,2022,53(01):90-106. DOI: 10.11777/j.issn1000-3304.2021.21184.
光散射技术是高分子领域中重要的表征手段之一. 静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等. 除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为. 本综述重点介绍稀溶液中静态光散射和动态光散射的历史、基本理论和实验技巧. 对于浓溶液适用的交叉相关技术和扩散波谱技术以及固体光散射也做简要介绍. 为了帮助初学者更好地理解并掌握光散射技术,综述的最后介绍了4个应用实例:动、静态光散射相结合跟踪研究线团到密实球的转变过程,光散射确定超支化分子的标度关系,时间可分辨的光散射来剖析聚合诱导胶束化的机理,以及去偏振动态光散射研究纳米粒子在生物介质中的聚集行为.
Laser light scattering (LLS)
which includes static light scattering (SLS) and dynamic light scattering (DLS)
has been widely applied in characterization of polymer samples in dilute solutions. SLS measures the angular dependence of the excess scattered intensity
from which the weight average molecular weight
radius of gyration
and second viral coefficient are obtained. DLS measures the intensity-intensity time correlation functions
from which the hydrodynamic radius and size distribution are obtained. The combination of SLS and DLS enables information on chain conformation. Beside synthetic polymers
LLS is also suitable for the solutions and suspensions of biopolymers
microbial
colloids
nanoparticles
virus
and vesicles. The history
theory
and experimental techniques of SLS and DLS specific for dilute solutions are summarized. In recent years
the cross-correlation techniques
diffusing wave spectroscopy
and other related techniques have been developed to expand LLS to study samples in semi-dilute and even concentrated solutions. These techniques
as well as solid light scattering
are also briefly introduced in this review. In the last
we provide four typical examples of light scattering experiments: the coil-to-globule transition as studied by the combination of SLS and DLS
the scaling of hyperbranched polymers as determined by LLS
the polymerization-induced micellization process as monitored by time-resolved LLS
and the aggregation of nanoparticles in biological media as investigated by depolarized DLS.
光散射高分子表征分子量回转半径相关函数
Laser light scatteringPolymer characterizationMolecular weightRadius of gyrationCorrelation function
Rayleigh L. Phil Mag, 1871, 41: 107-120
Rayleigh L. Phil Mag, 1899, 47:566-572. doi:10.1080/14786449908621298http://dx.doi.org/10.1080/14786449908621298
Debye P. Ann Phys, 1915, 351: 809-823. doi:10.1002/andp.19153510606http://dx.doi.org/10.1002/andp.19153510606
Gans R. Ann Phys, 1925, 381: 29-38. doi:10.1002/andp.19253810103http://dx.doi.org/10.1002/andp.19253810103
Einstein A. Ann Phys, 1910, 338: 1275-1298. doi:10.1002/andp.19103381612http://dx.doi.org/10.1002/andp.19103381612
Berne B J, Pecora R. Dynamic Light Scattering. With Applications to Chemistrys, Biology, and Physics. New York: Dover Publications, Inc., 2000. 5
Pecora R. J Chem Phys, 1964, 40: 1604-1614. doi:10.1063/1.1725368http://dx.doi.org/10.1063/1.1725368
MegenVan, Pusey P N. Phys Rev A, 1991, 43: 5429-5441
Urban C, Schurtenberger P. J Colloid Interface Sci, 1998, 207: 150-158. doi:10.1006/jcis.1998.5769http://dx.doi.org/10.1006/jcis.1998.5769
Lehner D, Kellner G, Schnablegger H, Glatter O. J Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.5327http://dx.doi.org/10.1006/jcis.1997.5327
Lilge D, Horn D. Colloid Polym Sci, 1991, 269: 704-712. doi:10.1007/bf00657408http://dx.doi.org/10.1007/bf00657408
Wiese H, Horn D. J Chem Phys, 1991, 84: 6429-6443. doi:10.1063/1.460272http://dx.doi.org/10.1063/1.460272
Phillies G D J. J Chem Phys, 1981, 74: 260-262. doi:10.1063/1.440884http://dx.doi.org/10.1063/1.440884
Pusey P N. Curr Opin Colloid Interface Sci, 1999, 4: 177-185. doi:10.1016/s1359-0294(99)00036-9http://dx.doi.org/10.1016/s1359-0294(99)00036-9
Meyer W, Cannell D, Smart A, Taylor T, Tin P. Appl Opt, 1997, 36: 7551-7558. doi:10.1364/ao.36.007551http://dx.doi.org/10.1364/ao.36.007551
Zakharov P, Bhat S, Schurtenberger P, Scheffold F. Appl Opt, 2006, 45: 1756-1764. doi:10.1364/ao.45.001756http://dx.doi.org/10.1364/ao.45.001756
Maret G, Wolf P E Z. Phys B, 1987, 65: 409-413. doi:10.1007/bf01303762http://dx.doi.org/10.1007/bf01303762
Brillouin L. Ann Phys, 1922, 17: 88-122. doi:10.1051/anphys/192209170088http://dx.doi.org/10.1051/anphys/192209170088
Stein R S, Rhodes M B. J Appl Phys, 1960, 31: 1873-1884. doi:10.1063/1.1735468http://dx.doi.org/10.1063/1.1735468
Stein R S, Chu W. J Polym Sci, Part A: Polym Chem, 1970, 8: 1137-1157. doi:10.1002/pol.1970.160080709http://dx.doi.org/10.1002/pol.1970.160080709
Van Aartsen J J, Stein R S. J Polym Sci, Part B: Polym Phys, 1971, 9: 295-311. doi:10.1002/pol.1971.160090206http://dx.doi.org/10.1002/pol.1971.160090206
Huglin M B. Light Scattering from Polymer Solutions. London: Academic Press, 1972. 204-289
Wolfgang S. Light Scattering from Polymer Solutions and Nanoparticle Dispersions Series. Translated by Zheng Cui, Liang Dehai. Beijing: China Machine Press, 2012. 1-25
Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 19
Hua W. Chem Phys, 2010, 367: 44-47. doi:10.1016/j.chemphys.2009.10.019http://dx.doi.org/10.1016/j.chemphys.2009.10.019
Zhao Zeqing(赵择卿), Lu Danian(陆大年), Yang Dingchao(杨定超). Light Scattering Technology(光散射技术). Beijing(北京): China Textile&Appare lPress(纺织工业出版社), 1989. 28-30
Bushuk W, Benoit H. Can J Chem, 1958, 36: 1616-1626. doi:10.1139/v58-235http://dx.doi.org/10.1139/v58-235
Wu C, Fai K, Luo W, Zhu X, Ma D. Macromolecules, 1994, 27: 6055-6060
Teraoka I. Polymer Solutions: An Indroduction to Physical Properties. New York: John Wiley&Sons, Inc. 2002. 168-171
Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 84
Kanematsu T, Sato T, Imai Y, Ute K, Kitayama T. Polym J, 2005, 37: 65-73. doi:10.1295/polymj.37.65http://dx.doi.org/10.1295/polymj.37.65
Delaye M, Gromi Ec A. Biopolymers, 1983, 22: 1203-1221. doi:10.1002/bip.360220413http://dx.doi.org/10.1002/bip.360220413
Vanhoudt J, Clauwaert J. Langmuir, 1999, 15: 44-57. doi:10.1021/la980747rhttp://dx.doi.org/10.1021/la980747r
Gulari Esin, Gulari Erdogan, Tsunashima Y, Chu B. J Chem Phys, 1979, 70: 3965-3965
Kim S H, Ramsay D J, Patterson G D, Selser J C. J Polym Sci, Part B: Polym Phys, 1990, 28: 2023-2056. doi:10.1002/polb.1990.090281111http://dx.doi.org/10.1002/polb.1990.090281111
Benmouna M, Vilgis T A, Hakem F. Macromolecules, 1992, 25: 1144-1152. doi:10.1021/ma00029a022http://dx.doi.org/10.1021/ma00029a022
Buhler E, Rinaudo M. Macromolecules, 2000, 33: 2098-2106. doi:10.1021/ma991309+http://dx.doi.org/10.1021/ma991309+
Litmanovich E A, Ivleva E. M Polym Sci, 2010, 52: 671-678. doi:10.1134/s0965545x10060143http://dx.doi.org/10.1134/s0965545x10060143
Corrotto J, Ortega F, Vázquez M, Freire J J. Macromolecules, 1996, 29: 5948-5954. doi:10.1021/ma9507397http://dx.doi.org/10.1021/ma9507397
Murphy R M, Yarmush M L, Colton C K. Biopolymers, 2010, 31: 1289-1295
Casassa Edward F. Polym J, 1972, 3: 517-525. doi:10.1295/polymj.3.517http://dx.doi.org/10.1295/polymj.3.517
Chi W. Polym Adv Technol, 2015, 8: 177-183
Lehner D, Kellner G, Schnablegger H, Glatter O J. Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.5327http://dx.doi.org/10.1006/jcis.1997.5327
Stieber F, Richtering W. Langmuir, 1995, 11: 4724-4727. doi:10.1021/la00012a024http://dx.doi.org/10.1021/la00012a024
Zakharov P, Scheffold F. Light Scattering Reviews 4. Bremen: Berlin Heidelberg: Springer-Verlag, 2009. 433-467. doi:10.1007/978-3-540-74276-0_8http://dx.doi.org/10.1007/978-3-540-74276-0_8
Pine D J, Weitz D A, Chaikin P M, Herbolzheimer E. Phys Rev Lett, 1988, 60: 1134-1137. doi:10.1103/physrevlett.60.1134http://dx.doi.org/10.1103/physrevlett.60.1134
Mason T G, Gang H, Weitz D A. J Opt Soc Am A, 1997, 14: 139-149. doi:10.1364/josaa.14.000139http://dx.doi.org/10.1364/josaa.14.000139
Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N. Am Inst Phys, 2008,1027: 1150-1152. doi:10.1021/la802323xhttp://dx.doi.org/10.1021/la802323x
Morse D C. Macromolecules, 1998, 31: 7044-7067. doi:10.1021/ma980304uhttp://dx.doi.org/10.1021/ma980304u
Wang X, Qiu A X, Wu C. Macromolecules, 1998, 31: 2972-2976. doi:10.1021/ma971873phttp://dx.doi.org/10.1021/ma971873p
Wu C, Zhou S. Macromolecules, 1995, 28: 8381-8387. doi:10.1021/ma00128a056http://dx.doi.org/10.1021/ma00128a056
Zhu M, Yang J, Li L, Duan X, Li L. Macromolecules, 2020, 53: 7980-7987. doi:10.1021/acs.macromol.0c01407http://dx.doi.org/10.1021/acs.macromol.0c01407
Ji W, Yan J, Chen E, Li Z, Liang D. Macromolecules, 2008, 41: 4914-4919. doi:10.1021/ma8005312http://dx.doi.org/10.1021/ma8005312
Yang J, Li Y, Hao N, Umair A, Liu A, Li L, Ye X. Macromolecules, 2019, 52: 1173-1187. doi:10.1021/acs.macromol.8b01784http://dx.doi.org/10.1021/acs.macromol.8b01784
Hao N, Duan X, Yang H, Umair A, Zhu M, Zaheer M, Yang J, Li L. Macromolecules, 2019, 52: 1065-1082. doi:10.1021/acs.macromol.8b02364http://dx.doi.org/10.1021/acs.macromol.8b02364
Löf D, Schillén K, Jönsson B, Evilevitch A. Phys Rev E, 2007, 76: 011914. doi:10.1103/physreve.76.011914http://dx.doi.org/10.1103/physreve.76.011914
Balog S, Rodriguez-Lorenzo L, Monnier C A, Obiols-Rabasa M, Rothen-Rutishauser B, Schurtenberger P, Petri-Fink A. Nanoscale, 2015, 7: 5991-5997. doi:10.1039/c4nr06538ghttp://dx.doi.org/10.1039/c4nr06538g
0
浏览量
870
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构