浏览全部资源
扫码关注微信
福州大学材料科学与工程学院 福州 350116
E-mail: dongyang.chen@fzu.edu.cn
纸质出版日期:2022-02-20,
网络出版日期:2021-11-12,
收稿日期:2021-08-14,
修回日期:2021-09-29,
移动端阅览
赵梦依,陈煜,张文政等.局部密集交联含氟聚芳醚阴离子交换膜的制备与性能[J].高分子学报,2022,53(02):153-164.
Zhao Meng-yi,Chen Yu,Zhang Wen-zheng,et al.Preparation and Properties of Densely Cross-linked Fluorinated Poly(arylene ether) Anion Exchange Membranes[J].ACTA POLYMERICA SINICA,2022,53(02):153-164.
赵梦依,陈煜,张文政等.局部密集交联含氟聚芳醚阴离子交换膜的制备与性能[J].高分子学报,2022,53(02):153-164. DOI: 10.11777/j.issn1000-3304.2021.21228.
Zhao Meng-yi,Chen Yu,Zhang Wen-zheng,et al.Preparation and Properties of Densely Cross-linked Fluorinated Poly(arylene ether) Anion Exchange Membranes[J].ACTA POLYMERICA SINICA,2022,53(02):153-164. DOI: 10.11777/j.issn1000-3304.2021.21228.
为开发同时具有阴离子传导率高、钒离子渗透率低、机械性能和化学稳定性优异的阴离子交换膜(AEM),本文以逐步缩聚法合成了含叔胺基的含氟聚芳醚(FPAE),然后以十溴丙基柱[5
]
芳烃(P5Br)作为交联剂,通过P5Br上的溴烷基与FPAE上的叔胺基之间的亲核取代反应进行交联,最后用碘甲烷将剩余叔胺基季铵化,制得一系列局部密集交联含氟聚芳醚阴离子交换膜QAFPAE-P5Br-
x
. 研究结果表明,所有膜在极性非质子溶剂中都具有较高的凝胶含量,证明已形成高效交联结构. 随着交联剂含量从0.5%增加到5%,膜的吸水率、溶胀率、阴离子传导率和VO
2+
透过率逐渐降低,而离子选择性、拉伸强度、面电阻和氧化稳定性逐渐增加. 交联剂含量为1%的QAFPAE-P5Br-1%膜同时具有较低的面电阻和VO
2+
透过率,综合性能优异. 以QAFPAE-P5Br-1%组装的全钒液流电池(VRFB)在80 mA·cm
-2
的电流密度下具有86.5%的能量效率,比以Nafion 212组装的VRFB高出7.7%. 另外,以QAFPAE-P5Br-1%组装的VRFB还具有优异的循环稳定性、放电容量保持率和抗自放电性能. 可见,局部密集交联是一种提高VRFB用AEM综合性能的有效方法.
In order to develop anion exchange membranes (AEMs) with simutaneously good anion conductivity
low vanadium ion permeability
excellent mechanical property
and high chemical stability
a fluorinated poly-(arylene ether) (FPAE) containing tertiary amine groups was condensation polymerized and then cross-linked with decabromopropyl pillar[5
]
arene (P5Br)
via
the nucleophilic substitution reaction. After that
iodomethane was introduced to convert the remaining tertiary amine g
roups into quaternary ammonium groups. A series of densely cross-linked FPAE AEMs
namely QAFPAE-P5Br-
x
were prepared with high gel contents in polar aprotic solvents. As the loading amount of P5Br is increased from 0.5% to 5%
the water uptake
swelling ratio
anion conductivity and VO
2+
permeability of the membranes are decreased
but the ion selectivity
tensile strength
area resistance and oxidative stability of the membranes are increased. The QAFPAE-P5Br-1% with only 1% of P5Br loaded has both low area resistance and low VO
2+
permeability
which are promising for VRFB applications. At a current density of 80 mA·cm
-2
the VRFB assembled with QAFPAE-P5Br-1% shows an energy efficiency of 86.5%
which is 7.7% higher than that of the VRFB assembled with Nafion 212. Besides
the VRFB assembled with QAFPAE-P5Br-1% has excellent cycling stability
high discharge capacity retention and good anti-self-discharge performance. Therefore
the dense cross-linking is an effective protocol to enhance the overall performance of AEMs.
全钒液流电池阴离子交换膜聚芳醚密集交联氧化稳定性
Vanadium redox flow batteryAnion exchange membranePoly(arylene ether)Dense cross-linkingOxidative stability
Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J. Chem Rev, 2011, 111(5): 3577-3613. doi:10.1021/cr100290vhttp://dx.doi.org/10.1021/cr100290v
Tanaka M, Fukasawa K, Nishino E, Yamaguchi S, Yamada K, Tanaka H, Bae B, Miyatake K, Watanabe M. J Am Chem Soc, 2011, 133(27): 10646-10654. doi:10.1021/ja204166ehttp://dx.doi.org/10.1021/ja204166e
Li X F, Zhang H M, Mai Z S, Zhang H, Vankelecom I. Energy Environ Sci, 2011, 4(4): 1147-1160. doi:10.1039/c0ee00770fhttp://dx.doi.org/10.1039/c0ee00770f
Chen D Y, Hickner M A, Agar E, Kumbur E C. Electrochem Commun, 2013, 26: 37-40. doi:10.1016/j.elecom.2012.10.007http://dx.doi.org/10.1016/j.elecom.2012.10.007
Wu C X, Lu S F, Wang H N, Xu X, Peng S K, Tan Q L, Xiang Y. J Mater Chem A, 2016, 4(4): 1174-1179. doi:10.1039/c5ta08593dhttp://dx.doi.org/10.1039/c5ta08593d
Chen Y, Li Y Y, Wang B S, Lin M, Xie Z, Chen D Y. Sci China Mater, 2021, 64(2): 349-361. doi:10.1007/s40843-020-1421-3http://dx.doi.org/10.1007/s40843-020-1421-3
Chen Y, Li Y, Xu J, Chen S, Chen D. ACS Appl Mater Interfaces, 2021, 13(16): 18923-18933. doi:10.1021/acsami.1c04250http://dx.doi.org/10.1021/acsami.1c04250
Yi X, Lei L, Wang C Y, Li N. J Mater Chem A, 2018, 6(45): 22778-22789. doi:10.1039/c8ta08813fhttp://dx.doi.org/10.1039/c8ta08813f
Zhang B G, Zhang S H, Weng Z H, Wang G S, Zhang E L, Yu P, Chen X M, Wang X W. J Power Sources, 2016, 325: 801-807. doi:10.1016/j.jpowsour.2016.06.101http://dx.doi.org/10.1016/j.jpowsour.2016.06.101
Cao L, Sun Q Q, Wang H X, Shi H F. Electrochim Acta, 2015, 158: 24-34. doi:10.1016/j.electacta.2015.01.159http://dx.doi.org/10.1016/j.electacta.2015.01.159
Ren X, Zhao L, Che X, Cai Y, Yang J. J Power Sources, 2020, 457: 10. doi:10.1016/j.jpowsour.2020.228037http://dx.doi.org/10.1016/j.jpowsour.2020.228037
Jeon J Y, Park S, Han J, Maurya S, Mohanty A D, Tian D, Saikia N, Hickner M A, Ryu C Y, Tuckerman M E, Paddison S J, Kim Y S, Bae C. Macromolecules, 2019, 52(5): 2139-2147. doi:10.1021/acs.macromol.8b02355http://dx.doi.org/10.1021/acs.macromol.8b02355
Al Munsur A, Hossain I, Nam S Y, Chae J E, Kim T H. Int J Hydrogen Energy, 2020, 45(31): 15658-15671. doi:10.1016/j.ijhydene.2020.04.063http://dx.doi.org/10.1016/j.ijhydene.2020.04.063
Dong J H, Li H H, Ren X R, Che X F, Yang J S, Aili D. Int J Hydrogen Energy, 2019, 44(39): 22137-22145. doi:10.1016/j.ijhydene.2019.06.130http://dx.doi.org/10.1016/j.ijhydene.2019.06.130
Zhang S, Zhu X L, Jin C H, Hu H. React Funct Polym, 2019, 138: 62-69. doi:10.1016/j.reactfunctpolym.2019.02.012http://dx.doi.org/10.1016/j.reactfunctpolym.2019.02.012
Wang J J, He G H, Wu X M, Yan X M, Zhang Y P, Wang Y D, Du L. J Membr Sci, 2014, 459: 86-95. doi:10.1016/j.memsci.2014.01.068http://dx.doi.org/10.1016/j.memsci.2014.01.068
Han B, Pan J F, Yang S S, Zhou M, Li J, Diaz A S, Bruggen B V D, Gao C J, Shen J N. Ind Eng Chem Res, 2016, 55(26): 7171-7178. doi:10.1021/acs.iecr.6b01736http://dx.doi.org/10.1021/acs.iecr.6b01736
Vengatesan S, Santhi S, Sozhan G, Ravichandran S, Davidson D J, Vasudevan S. RSC Adv, 2015, 5(35): 27365-27371. doi:10.1039/c4ra16203jhttp://dx.doi.org/10.1039/c4ra16203j
Han X, Zheng X Y, Song S Y, Wang J L, Wang L. J Mol Struct, 2019, 1195: 807-814. doi:10.1016/j.molstruc.2019.06.031http://dx.doi.org/10.1016/j.molstruc.2019.06.031
Han X, Wang J L, Wang L L. J Appl Polym Sci, 2019, 136(16): 47395. doi:10.1002/app.47395http://dx.doi.org/10.1002/app.47395
Peng J W, Liu Z C, Liang M H, Wang P, Hu W, Jiang Z H, Liu B. J Polym Sci, 2020, 58(3): 391-401. doi:10.1002/pol.20190053http://dx.doi.org/10.1002/pol.20190053
Weissbach T, Wright A G, Peckham T J, Alavijeh A S, Pan V, Kjeang E, Holdcroft S. Chem Mater, 2016, 28(21): 8060-8070. doi:10.1021/acs.chemmater.6b03902http://dx.doi.org/10.1021/acs.chemmater.6b03902
Gao X L, Sun L X, Wu H Y, Zhu Z Y, Xiao N, Chen J H, Yang Q, Zhang Q G, Zhu A M, Liu Q L. J Mater Chem A, 2020, 8(26): 13065-13076. doi:10.1039/d0ta04350hhttp://dx.doi.org/10.1039/d0ta04350h
Kwon H G, Bae I, Choi S H. J Membr Sci, 2021, 620: 118928. doi:10.1016/j.memsci.2020.118928http://dx.doi.org/10.1016/j.memsci.2020.118928
Hossain M M, Hou J Q, Wu L, Ge Q Q , Liang X, Mondal A N, Xu T W. J Membr Sci, 2018, 550: 101-109. doi:10.1016/j.memsci.2017.12.062http://dx.doi.org/10.1016/j.memsci.2017.12.062
Ogoshi T, Yamagishi T. Chem Commun, 2014, 50(37): 4776-4787. doi:10.1039/c4cc00738ghttp://dx.doi.org/10.1039/c4cc00738g
Ogoshi T, Yamagishi T A, Nakamoto Y. Chem Rev, 2016, 116(14): 7937-8002. doi:10.1021/acs.chemrev.5b00765http://dx.doi.org/10.1021/acs.chemrev.5b00765
Shimada M, Shimada S, Miyake J, Uchida M, Miyatake K. J Polym Sci, Part A: Polym Chem, 2016, 54(7): 935-944. doi:10.1002/pola.27928http://dx.doi.org/10.1002/pola.27928
Chen D Y, Hickner M A, Wang S J, Pan J, Min X, Meng Y. Int J Hydrogen Energy, 2012, 37(21): 16168-16176. doi:10.1016/j.ijhydene.2012.08.051http://dx.doi.org/10.1016/j.ijhydene.2012.08.051
Joseph R, Naugolny A, Feldman M, Herzog I M, Fridman M, Cohen Y. J Am Chem Soc, 2016, 138(3): 754-757. doi:10.1021/jacs.5b11834http://dx.doi.org/10.1021/jacs.5b11834
Vafiadis H, Skyllas-Kazacos M. J Membr Sci, 2006, 279(1-2): 394-402. doi:10.1016/j.memsci.2005.12.028http://dx.doi.org/10.1016/j.memsci.2005.12.028
Wiedemann E, Heintz A, Lichtenthaler R N. J Membr Sci, 1998, 141(2): 215-221. doi:10.1016/s0376-7388(97)00308-6http://dx.doi.org/10.1016/s0376-7388(97)00308-6
Kim S, Tighe T B, Schwenzer B, Yan J L, Zhang J L, Liu J, Yang Z G, Hickner M A. J Appl Electrochem, 2011, 41(10): 1201-1213. doi:10.1007/s10800-011-0313-0http://dx.doi.org/10.1007/s10800-011-0313-0
Chen X L, Lü H X, Lin Q L, Zhang X, Chen D Y, Zheng Y Y. J Membr Sci, 2018, 549: 12-22. doi:10.1016/j.memsci.2017.11.066http://dx.doi.org/10.1016/j.memsci.2017.11.066
Chen Y, Lin Q L, Zheng Y Y, Yu Y, Chen D Y. Sci China Mater, 2019, 62(2): 211-224. doi:10.1007/s40843-018-9299-yhttp://dx.doi.org/10.1007/s40843-018-9299-y
0
浏览量
124
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构