浏览全部资源
扫码关注微信
1.之江实验室 交叉创新研究院 智能芯片与器件研究中心 杭州 311121
2.中国科学院化学研究所 绿色印刷重点实验室 北京分子科学国家研究中心 北京 100190
3.浙江大学光电科学与工程学院 杭州 310027
E-mail: caochun@iccas.ac.cn;
E-mail:cfkuang@zju.edu.cn
纸质出版日期:2022-06-20,
网络出版日期:2022-01-14,
收稿日期:2021-10-28,
录用日期:2021-12-14
移动端阅览
曹春,邱毅伟,刘建亭等.聚乙烯吡咯烷酮杂化双色光敏激光直写光刻胶研究[J].高分子学报,2022,53(06):608-616.
Cao Chun,Qiu Yi-wei,Liu Jian-ting,et al.Polyvinylpyrrolidone Hybrid Photoresist for Two-color Sensitive Direct Laser Writing[J].ACTA POLYMERICA SINICA,2022,53(06):608-616.
曹春,邱毅伟,刘建亭等.聚乙烯吡咯烷酮杂化双色光敏激光直写光刻胶研究[J].高分子学报,2022,53(06):608-616. DOI: 10.11777/j.issn1000-3304.2021.21323.
Cao Chun,Qiu Yi-wei,Liu Jian-ting,et al.Polyvinylpyrrolidone Hybrid Photoresist for Two-color Sensitive Direct Laser Writing[J].ACTA POLYMERICA SINICA,2022,53(06):608-616. DOI: 10.11777/j.issn1000-3304.2021.21323.
有机高分子光刻胶是双色光敏激光直写技术实现微纳制造的介质和载体,直接影响了其所制造微纳结构的精度、真实度等性能. 采用聚乙烯吡咯烷酮(PVP)作为杂化组分,引入到季戊四醇三丙烯酸酯(PETA)活性单体中,以调控光刻胶的黏度、力学强度、体积收缩率和聚合反应速度等. 结果表明,PVP与PETA存在氢键相互作用,可作为交联位点,提高光刻胶的交联度. 同时,PVP的引入使得体系黏度增加,可降低氧阻聚效应,有效地提升了光刻胶中PETA的光聚合单体转化率(30.1%),获得了更高的灵敏度和更低聚合阈值(6.5 mW,20 wt% PVP). 此外,PVP的引入还使得光刻胶的体积收缩率由18%降为3%,大幅减少了所制造结构的内应力,改善了光刻精度和微纳结构的真实度. 最终,由PVP杂化光刻胶加工的线条精度高达48 nm,且比无PVP光刻胶具有更高的均匀性和规整度. 本研究对高精度及高质量微纳制造和多种应用都具有重要的意义.
Organic-polymer photoresist is the medium and carrier of micro manufacturing by two-color sensitive direct laser writing technology
which directly affects the accuracy and authenticity of the micro structures. In this work
polyvinylpyrrolidone (PVP) is introduced into pentaerythritol triacrylate (PETA) to control the viscosity
mechanical strength
volume shrinkage and polymerization rate of photoresist. The results show that hydrogen bond is formed between PVP and PETA
which can be used as a crosslinking site to improve the crosslinking degree of photoresist. Meanwhile
the introduction of PVP also increases the viscosity of the system
reduces the oxygen inhibition
and finally effectively improves the photo-polymerization conversion rate (30.1%) of PETA in photoresist
obtaining higher sensitivity and lower polymerization threshold (6.5 mW
20 wt% PVP). In addition
the PVP sharply reduces the volume shrinkage of photoresist from 18% to 3%
greatly weakening the internal stress of the fabricated structure
thus improving the lithography performance of micro structures. Finally
the minimum linewidth of PVP composited photoresist can reach 48 nm
which has higher uniformity and regularity than that of photoresist without PVP. Thus
this work is of great significance for high-precision and high-quality micro manufacturing and various applications.
聚乙烯吡咯烷酮光刻胶双色光敏激光直写
PolyvinylpyrrolidonePhotoresistTwo-color sensitiveDirect laser writing
Müller P, Müller R, Hammer L, Barner-Kowollik C, Wegener M, Blasco E. Chem Mater, 2019, 31(6): 1966-1972. doi:10.1021/acs.chemmater.8b04696http://dx.doi.org/10.1021/acs.chemmater.8b04696
Gan Z, Cao Y, Evans R A, Gu M. Nat Commun, 2013, 4: 2016. doi:10.1038/ncomms3061http://dx.doi.org/10.1038/ncomms3061
Fischer J, von Freymann G, Wegener M. Adv Mater, 2010, 22(32): 3578-3582. doi:10.1002/adma.201000892http://dx.doi.org/10.1002/adma.201000892
Lay C L, Koh C S L, Lee Y H, Phan-Quang G C, Sim H Y F, Leong S X, Han X, Phang I Y, Ling X Y. ACS App Mater Interfaces, 2020, 12(9): 10061-10079. doi:10.1021/acsami.9b20911http://dx.doi.org/10.1021/acsami.9b20911
Harinarayana V, Shin Y C. Opt Laser Technol, 2021, 142: 107180. doi:10.1016/j.optlastec.2021.107180http://dx.doi.org/10.1016/j.optlastec.2021.107180
Fischer J, Mueller J B, Quick A S, Kaschke J, Barner-Kowollik C, Wegener M. Adv Opt Mater, 2015, 3(2): 221-232. doi:10.1002/adom.201400413http://dx.doi.org/10.1002/adom.201400413
He X, Li T, Zhang J, Wang Z. Micromachines, 2019, 10(11): 726. doi:10.3390/mi10110726http://dx.doi.org/10.3390/mi10110726
de Beer Martin P, van der Laan Harry L, Cole Megan A, Whelan Riley J, Burns Mark A, Scott Timothy F. Sci Adv, 2019, 5(1): eaau8723. doi:10.1126/sciadv.aau8723http://dx.doi.org/10.1126/sciadv.aau8723
Harke B, Dallari W, Grancini G, Fazzi D, Brandi F, Petrozza A, Diaspro A. Adv Mater, 2013, 25(6): 904-909. doi:10.1002/adma.201204141http://dx.doi.org/10.1002/adma.201204141
Elmeranta M, Vicidomini G, Duocastella M, Diaspro A, de Miguel G. Opt Mater Express, 2016, 6(10): 3169-3179. doi:10.1364/ome.6.003169http://dx.doi.org/10.1364/ome.6.003169
Wiesbauer M, Wollhofen R, Vasic B, Schilcher K, Jacak J, Klar T A. Nano Lett, 2013, 13(11): 5672-5678. doi:10.1021/nl4033523http://dx.doi.org/10.1021/nl4033523
Buchegger B, Tanzer A, Posch S, Gabriel C, Klar T A, Jacak J. J Nanobiotechnol, 2021, 19(1): 23. doi:10.1186/s12951-020-00762-8http://dx.doi.org/10.1186/s12951-020-00762-8
Wollhofen R, Katzmann J, Hrelescu C, Jacak J, Klar T A. Opt Express, 2013, 21(9): 10831-10840. doi:10.1364/oe.21.010831http://dx.doi.org/10.1364/oe.21.010831
Yuan C Y, Liu J K, Jia T Q, Zhou K, Zhang H X, Pan J, Feng D H, Sun Z R. J Nonlinear Opt Phys, 2014, 23(2): 1450015. doi:10.1142/s0218863514500155http://dx.doi.org/10.1142/s0218863514500155
Fischer J, Wegener M. Laser Photonics Rev, 2013, 7(1): 22-44. doi:10.1002/lpor.201100046http://dx.doi.org/10.1002/lpor.201100046
Limongi T, Brigo L, Tirinato L, Pagliari F, Gandin A, Contessotto P, Giugni A, Brusatin G. Biomed Mater, 2021, 16(3): 035013. doi:10.1088/1748-605x/abca4bhttp://dx.doi.org/10.1088/1748-605x/abca4b
Nguyen A K, Narayan R J. Mater Today, 2017, 20(6): 314-322. doi:10.1016/j.mattod.2017.06.004http://dx.doi.org/10.1016/j.mattod.2017.06.004
Rajabasadi F, Schwarz L, Medina-Sánchez M, Schmidt O G. Prog Mater Sci, 2021, 120: 100808. doi:10.1016/j.pmatsci.2021.100808http://dx.doi.org/10.1016/j.pmatsci.2021.100808
Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu X L, Marder S R, Perry J W. Nature, 1999, 398(6722): 6460349. doi:10.1109/QELS.1999.807283http://dx.doi.org/10.1109/QELS.1999.807283
Zandrini T, Liaros N, Jiang L J, Lu Y F, Fourkas J T, Osellame R, Baldacchini T. Opt Mater Express, 2019, 9(6): 2601-2616. doi:10.1364/ome.9.002601http://dx.doi.org/10.1364/ome.9.002601
Ligon S C, Husar B, Wutzel H, Holman R, Liska R. Chem Rev, 2014, 114(1): 557-589. doi:10.1021/cr3005197http://dx.doi.org/10.1021/cr3005197
Lu W E, Dong X Z, Chen W Q, Zhao Z S, Duan X M. J Mater Chem, 2011, 21(15): 5650-5659. doi:10.1039/c0jm04025hhttp://dx.doi.org/10.1039/c0jm04025h
D'Alpino P H P, Silva M S, Vismara M V G, Di Hipólito V, Miranda González A H, de Oliveira Graeff C F. J Mech Behav Biomed, 2015, 46: 83-92. doi:10.1016/j.jmbbm.2015.02.019http://dx.doi.org/10.1016/j.jmbbm.2015.02.019
Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C. ACS Nano, 2008, 2(11): 2257-2262. doi:10.1021/nn800451whttp://dx.doi.org/10.1021/nn800451w
Jiang L, Xiong W, Zhou Y, Liu Y, Huang X, Li D, Baldacchini T, Jiang L, Lu Y. Opt Express, 2016, 24(12): 13687-13701. doi:10.1364/oe.24.013687http://dx.doi.org/10.1364/oe.24.013687
Xiong W, Liu Y, Jiang L J, Zhou Y S, Li D W, Jiang L, Silvain J F, Lu Y F. Adv Mater, 2016, 28(10): 2002-2009. doi:10.1002/adma.201505516http://dx.doi.org/10.1002/adma.201505516
Li Z, Pucher N, Cicha K, Torgersen J, Ligon S C, Ajami A, Husinsky W, Rosspeintner A, Vauthey E, Naumov S, Scherzer T, Stampfl J, Liska R. Macromolecules, 2013, 46(2): 352-361. doi:10.1021/ma301770ahttp://dx.doi.org/10.1021/ma301770a
Xing J F, Chen W Q, Gu J, Dong X Z, Takeyasu N, Tanaka T, Duan X M, Kawata S. J Mater Chem, 2007, 17(14): 1433-1438. doi:10.1039/b616792fhttp://dx.doi.org/10.1039/b616792f
Peng H, Bi S, Ni M, Xie X, Liao Y, Zhou X, Xue Z, Zhu J, Wei Y, Bowman C N, Mai Y W. J Am Chem Soc, 2014, 136(25): 8855-8858. doi:10.1021/ja502366rhttp://dx.doi.org/10.1021/ja502366r
Schoerpf S, Catel Y, Moszner N, Gorsche C, Liska R. Polym Chem, 2019, 10(11): 1357-1366. doi:10.1039/c8py01540fhttp://dx.doi.org/10.1039/c8py01540f
Catel Y, Fässler P, Fischer U, Gorsche C, Liska R, Schörpf S, Tauscher S, Moszner N. Eur Polym J, 2018, 98: 439-447. doi:10.1016/j.eurpolymj.2017.11.042http://dx.doi.org/10.1016/j.eurpolymj.2017.11.042
Par M, Mohn D, Attin T, Tarle Z, Tauböck T T. Sci Rep-UK, 2020, 10(1): 15237. doi:10.1038/s41598-020-72254-6http://dx.doi.org/10.1038/s41598-020-72254-6
Zhou X, Hou Y, Lin J. AIP Adv, 2015, 5(3): 030701. doi:10.1063/1.4916886http://dx.doi.org/10.1063/1.4916886
0
浏览量
143
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构