浏览全部资源
扫码关注微信
青岛大学纺织服装学院 青岛 266071
E-mail: jinlei.miao@qdu.edu.cn;
E-mail:lijunqu@qdu.edu.cn
纸质出版日期:2022-06-20,
网络出版日期:2022-02-23,
收稿日期:2021-10-28,
录用日期:2021-12-27
移动端阅览
范强,苗锦雷,刘旭华等.基于仿生MXene纤维导电网络的柔性透明电极及电容传感器[J].高分子学报,2022,53(06):617-625.
Fan Qiang,Miao Jin-lei,Liu Xu-hua,et al.Flexible Transparent Electrode and Capacitance Sensor Based on Bionic-MXene Fiber Conductive Network[J].ACTA POLYMERICA SINICA,2022,53(06):617-625.
范强,苗锦雷,刘旭华等.基于仿生MXene纤维导电网络的柔性透明电极及电容传感器[J].高分子学报,2022,53(06):617-625. DOI: 10.11777/j.issn1000-3304.2021.21324.
Fan Qiang,Miao Jin-lei,Liu Xu-hua,et al.Flexible Transparent Electrode and Capacitance Sensor Based on Bionic-MXene Fiber Conductive Network[J].ACTA POLYMERICA SINICA,2022,53(06):617-625. DOI: 10.11777/j.issn1000-3304.2021.21324.
为了开发具有优良性能的智能伪装隐身器件,使用预模板法制备了柔性透明电极. 以叶脉纤维为预模板,在其表面沉积金属碳化物/氮化物(MXene),从而开发了具有透明有序导电网络结构的透明电极. 叶脉表面的羟基基团与导电材料的表面活性基团的相互作用极大地提高了导电材料与基底的表面结合力. 此柔性透明电极在透光率为80.6%时,方阻为11.4 Ω/sq,有效地避免了光电特性之间的“权衡”效应,且在1000次弯曲循环下电阻几乎保持不变,具备良好的耐久性和稳定性. 将此透明电极成功制备透明电容式传感器,其灵敏度可达0.09 kPa
-1
,且在1000次循环之后相对电容基本保持不变,具有出色的传感性能和耐久性,可以在人难以察觉的状态下监测人体运动信号. 此柔性透明电极和透明电容传感器在可穿戴伪装电子领域具有巨大潜力.
With the continuous development of intelligent wearable devices
flexible electronic products that can perform intelligent camouflage and stealth have attracted more and more attention
among which flexible transparent electrodes play an increasingly important role in the field of intelligent camouflage and stealth devices. Biomimetic to nature is an ideal choice to self-assemble micro-units into macro-structure assembly. In nature
most leaf veins have hierarchical interconnected structures. These different levels of veins form an interconnected interwoven network structure. In order to develop intelligent camouflage devices with excellent performance
the flexible transparent electrodes were prepared by pretemplate method inspired by leaf veins. The transparent electrodes were developed with a transparent conductive mesh structure by self-assembling metal carbide/nitride (MXene) on the surface of the vein fibers. The interaction between the hydroxyl groups on the surfaceof the veins and the active groups on the surface of the conductive material greatly improves the surface bonding strength of the conductive material and the substrate. While maintaining high transparency
the transparent electrode induces MXene t
o evenly construct ordered conductive network on the flexible vein
effectively avoiding the "trade off" effect between photoelectric characteristics
and has excellent stability and durability. The FTEs with a sheet resistance of 11.4 Ω/sq
a transmittance of 80.6%
have excellent mechanical flexibility with a negligible increase in sheet resistance even under 1000 cyclic bending tests. The transparent capacitive sensor was successfully prepared with the transparent electrode
with the sensitivity up to 0.09 kPa
-1
and the relative capacitance remains essentially unchanged after 1000 cycles. The transparent capacitance sensor has good pressure detection and non-contact monitoring function. As an intelligent stealth camouflage electronic device
it has excellent sensing performance and stability
and can monitor human movement signals in an imperceptible state. The flexible transparent electrode and transparent capacitive sensor possess great potential in the field of smart wearables and wearable camouflage electronics.
柔性透明电极有序导电网络柔性透明电容传感器智能隐形伪装运动监测
Flexible transparent electrodeOrdered conductive networkFlexible transparent capactive sensorIntelligent invisibility camouflageMovement monitoring
Wang J, Liang M, Fang Y, Qiu T, Zhang J, Zhi L. Adv Mater, 2012, 24(21): 2874-2878. doi:10.1002/adma.201200055http://dx.doi.org/10.1002/adma.201200055
Cho S, Kang S, Pandya A, Shanker R, Khan Z, Lee Y, Park J, Craig S L, Ko H. ACS Nano, 2017, 11(4): 4346-4357. doi:10.1021/acsnano.7b01714http://dx.doi.org/10.1021/acsnano.7b01714
Liu Q, Liu Z, Li C, Xie K, Zhu P, Shao B, Zhang J,Yang J, Zhang J,Wang Q, Guo C F. Adv Sci, 2020, 7(10): 2000348. doi:10.1002/advs.202000348http://dx.doi.org/10.1002/advs.202000348
Jeong C K, Hyeon D Y, Hwang G T, Lee G , Lee M K, Park J J, Park K I. J Mater Chem A, 2019, 7(44): 25481-25489. doi:10.1039/c9ta09864jhttp://dx.doi.org/10.1039/c9ta09864j
Pyo S, Choi J, Kim J. Adv Electron Mater, 2018, 4(1): 1700427. doi:10.1002/aelm.201700427http://dx.doi.org/10.1002/aelm.201700427
Zhao W, Jiang M, Wang W, Liu S, Huang W, Zhao Q. Adv Funct Mater, 2021, 31(11): 2009136. doi:10.1002/adfm.202009136http://dx.doi.org/10.1002/adfm.202009136
Liu T, Yan R, Huang H, Pan L, Cao X, deMello A, Niederberger M. Adv Funct Mater, 2020, 30(46): 2004410. doi:10.1002/adfm.202004410http://dx.doi.org/10.1002/adfm.202004410
Won P, Kim K K, Kim H, Park J J, Ha I, Shin J, Jung J, Cho H, Kwon J,Lee H, Ko S H. Adv Mater, 2021, 33(19): 2002397. doi:10.1002/adma.202002397http://dx.doi.org/10.1002/adma.202002397
Wang T, Guo Y, Wan P, Zhang H, Chen X, Sun X. Small, 2016, 12(28): 3748-3756. doi:10.1002/smll.201601049http://dx.doi.org/10.1002/smll.201601049
Jia Y, Chen C, Jia D, Li S, Ji S, Ye C. ACS Appl Mater Interfaces, 2016, 8(15): 9865-9871. doi:10.1021/acsami.6b00500http://dx.doi.org/10.1021/acsami.6b00500
Tsapenko A P, Goldt A E, Shulga E, Popov Z I, Maslakov K I, Anisimov A S, Sorokin P B, Nasibulin A J. Carbon, 2018, 130: 448-457. doi:10.1016/j.carbon.2018.01.016http://dx.doi.org/10.1016/j.carbon.2018.01.016
Hoeng F, Denneulin A, Krosnicki G, Bras J. J Mater Chem C, 2016, 4(46): 10945-10954. doi:10.1039/c6tc03629ehttp://dx.doi.org/10.1039/c6tc03629e
Xie R, Sugime H, Noda S. Carbon, 2020, 164: 150-156. doi:10.1016/j.carbon.2020.03.063http://dx.doi.org/10.1016/j.carbon.2020.03.063
Hantanasirisakul K, Zhao M Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi, Y. Adv Electron Mater, 2016, 2(6): 1600050. doi:10.1002/aelm.201600050http://dx.doi.org/10.1002/aelm.201600050
Vosgueritchian M, Lipomi D J, Bao Z. Adv Funct Mater, 2012, 22(2): 421-428. doi:10.1002/adfm.201101775http://dx.doi.org/10.1002/adfm.201101775
Wang H, Wei C, Zhu K, Zhang Y, Gong C, Guo J, Zhang J, Yu L,Zhan. ACS Appl Mater Interfaces, 2017, 9(39): 34456-34466. doi:10.1021/acsami.7b09891http://dx.doi.org/10.1021/acsami.7b09891
Wu Xiaoli(伍晓莉), Wang Yuehui(王悦辉), Li Jingze(李晶泽). Electron Compon Mater(电子元件与材料), 2020, 39(5): 10-21
Hsiao S T, Tien H W, Liao W H, Wang Y S, Li S M, Mma C C, Yu Y H, Chuang W P. J Mater Chem C, 2014, 2(35): 7284-7291. doi:10.1039/c4tc01217hhttp://dx.doi.org/10.1039/c4tc01217h
Kang H S, Choi J, Cho W, Lee H, Lee D, Lee D G, Kim H T. J Mater Chem C, 2016, 4(41): 9834-9840. doi:10.1039/c6tc03817dhttp://dx.doi.org/10.1039/c6tc03817d
Xiong W, Liu H, Chen Y, Zheng M, Zhao Y, Kong X, Wang Y, Zhang X, Kong X, Wang P, Jiang L. Adv Mater, 2016, 28(33): 7167-7172. doi:10.1002/adma.201600358http://dx.doi.org/10.1002/adma.201600358
Chen F, Liu S, Shen J, Wei L, Liu A, Chan-Park M B, Chen Y. Langmuir, 2011, 27(15): 9174-9181. doi:10.1021/la201230khttp://dx.doi.org/10.1021/la201230k
Li S, Shi Q, Li Y, Yang J, Chang T H, Jiang J, Chen P Y. Adv Funct Mater, 2020, 30(40): 2003721. doi:10.1002/adfm.202003721http://dx.doi.org/10.1002/adfm.202003721
Zhang B, Xiang Z, Zhu S, Hu Q, Cao Y, Zhong J, Zhong Q, Wang B, Fang Y S, Hu B, Zhou J, Wang Z L. Nano Res, 2014, 7(10): 1488-1496. doi:10.1007/s12274-014-0510-3http://dx.doi.org/10.1007/s12274-014-0510-3
Kim S Y, Park S, Park H W, Park D H, Jeong Y, Kim D H. Adv Mater, 2015, 27(28): 4178-4185. doi:10.1002/adma.201501408http://dx.doi.org/10.1002/adma.201501408
Chen S, Zhuo B, Guo X. ACS Appl Mater Interfaces, 2016, 8(31): 20364-20370. doi:10.1021/acsami.6b05177http://dx.doi.org/10.1021/acsami.6b05177
Kang S, Lee J, Lee S, Kim S, Kim J K, Algadi H, Al-Sayari S, Kim D E, Lee T. Adv Electron Mater, 2016, 2(12): 1600356. doi:10.1002/aelm.201600356http://dx.doi.org/10.1002/aelm.201600356
Atalay O, Atalay A, Gafford J, Walsh C. Adv Mater Technol, 20172018, 3(1): 1700237
Qiu J, Guo X, Chu R, Wang S, Zeng W, Qu L, Zhao Y, Yan F, Xing G. ACS Appl Mater Interfaces, 2019, 11(43): 40716-40725. doi:10.1021/acsami.9b16511http://dx.doi.org/10.1021/acsami.9b16511
Li M, Chen J, Zhong W, Luo M, Wang W, Qing X, Lu Y, Liu Q, Liu K, Wang Y, Wang D. ACS Sens, 2020, 5(8): 2545-2554. doi:10.1021/acssensors.0c00870http://dx.doi.org/10.1021/acssensors.0c00870
Mahata C, Algadi H, Lee J, Kim S, Lee T. Measurement, 2020, 151: 107095. doi:10.1016/j.measurement.2019.107095http://dx.doi.org/10.1016/j.measurement.2019.107095
0
浏览量
165
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构