浏览全部资源
扫码关注微信
1.西京学院理学院 西安 710123
2.陕西科技大学轻工科学与工程学院 西安 710021
3.西北工业大学化学与化工学院 西安 710072
E-mail: qianliwei@mail.nwpu.edu.cn
纸质出版日期:2022-06-20,
网络出版日期:2022-04-22,
收稿日期:2021-11-15,
录用日期:2022-02-08
移动端阅览
宋文琦,杨雨璇,刘文倩等.基于金属有机框架载体的免疫球蛋白G印迹材料的构筑及其识别性能研究[J].高分子学报,2022,53(06):653-662.
Song Wen-qi,Yang Yu-xuan,Liu Wen-qian,et al.Study on the Preparation and Recognition Performance of Immunoglobulin G Imprinted Material Based on Metal Organic Framework[J].ACTA POLYMERICA SINICA,2022,53(06):653-662.
宋文琦,杨雨璇,刘文倩等.基于金属有机框架载体的免疫球蛋白G印迹材料的构筑及其识别性能研究[J].高分子学报,2022,53(06):653-662. DOI: 10.11777/j.issn1000-3304.2021.21348.
Song Wen-qi,Yang Yu-xuan,Liu Wen-qian,et al.Study on the Preparation and Recognition Performance of Immunoglobulin G Imprinted Material Based on Metal Organic Framework[J].ACTA POLYMERICA SINICA,2022,53(06):653-662. DOI: 10.11777/j.issn1000-3304.2021.21348.
以人免疫球蛋白G (Ig G)作为模板分子,利用模板固定化与表面印迹技术相结合策略制备新型、高效的蛋白印迹材料. 为了增加印迹材料的分离效果,金属有机框架UIO-66被作为模板蛋白固定化的纳米载体. 同时为了提高印迹材料的识别性,在其制备中加入了两性离子单体. 研究结果表明,UIO-66晶体呈现出规则的正八面体形状,由它所制备的印迹材料(UIO-66@MIPs)展现出优异的比表面积(362.5 m
2
/g). 此外,通过对印迹聚合物制备过程中两性离子单体用量的优化,发现其占功能单体总质量20%时,可以获得最佳的识别性. 吸附实验研究结果表明,UIO-66@MIPs可在浓度为2.0 mg/mL的Ig G溶液中达到饱和吸附,其饱和吸附量可达217.4 mg/g,最大印迹因子为2.48,吸附平衡时间为50 min. 另外,选择性和竞争性吸附实验表明,与非印迹材料相比,UIO-66@MIPs对Ig G具有更强的亲合能力,并可以从混合蛋白溶液中高效分离Ig G. 本文的研究结果将为构筑高性能Ig G识别材料提供新的思路,对设计高效、廉价的新型冠状病毒检测试剂奠定理论基础.
In this work
human immunoglobulin G (Ig G) is selected as the template
and the strategy of combining template immobilization and surface imprinting technology is used to prepare a new and efficient protein imprinting material (MIPs). In order to increase the separation effect of MIPs
the metal organic framework (UIO-66) is fabricated and used as a carrier for protein immobilization. Meanwhile
in order to improve the recognition of imprinting materials
zwitterionic monomers participate in the preparation of MIPs to improve their recognition ability. The research results showed that the UIO-66 crystal presented a regular octahedral shape
and the as-prepared MIPs exhibited an excellent specific surface area (362.5 m
2
/g). In addition
by optimizing the amount of zwitterionic monomer
it was found that the best recognition could be obtained when it accounted for 20% of the total mass of the functional monomer. The adsorption experiments also demonstrated that UIO-66@MIPs could achieve saturated adsorption in an Ig G solution with a concentration of 2.0 mg/mL
and its saturated adsorption capacity reached 217.4 mg/g with the imprinting factor of 2.48. Furthermore
the adsorption equilibrium time of UIO-66@MIPs was about 50 min. Moreover
the specific recognition experiment of UIO-66@MIPs showed that compared with non-imprinted materials
it could separate Ig G more effectively from the protein mixture solution
proving their excellent specific recognition capability.
蛋白质印迹技术金属有机框架两性离子单体
Protein imprinting technologyMetal-organic frameworkZwitterionic monomer
Wackerlig J, Schirhagl R. Anal Chem, 2016, 88(1): 250-261. doi:10.1021/acs.analchem.5b03804http://dx.doi.org/10.1021/acs.analchem.5b03804
Wu X, Wang X, Lu W, Wang X, Li J, You H, Xiong H, Chen L. J Chromatogr A, 2016, 1435: 30-38. doi:10.1016/j.chroma.2016.01.040http://dx.doi.org/10.1016/j.chroma.2016.01.040
Nguy T P, Phi T V, Tram D T, Eersels K, Wagner P, Lien T T. Sensor Actuat B-Chem, 2017, 246: 461-470. doi:10.1016/j.snb.2017.02.101http://dx.doi.org/10.1016/j.snb.2017.02.101
Zhang Xianfeng(张现峰), Du Xuezhong(杜学忠). Progress in Chemistry(化学进展), 2016, 28: 149-162. doi:10.7536/PC150719http://dx.doi.org/10.7536/PC150719
Xing R, Wang S, Bie Z, He H, Liu Z. Nat Protoc, 2017, 12: 964-987. doi:10.1038/nprot.2017.015http://dx.doi.org/10.1038/nprot.2017.015
Yang C, Yan X, Guo H, Fu G. Biosens Bioelectron, 2016, 75: 129-135. doi:10.1016/j.bios.2015.08.033http://dx.doi.org/10.1016/j.bios.2015.08.033
Qian L, Sun J, Hou C, Yang J, Li Y, Lei D, Yang M, Zhang S. Talanta, 2017, 168: 174-182. doi:10.1016/j.talanta.2017.03.044http://dx.doi.org/10.1016/j.talanta.2017.03.044
Chen F, Mao M, Wang J, Liu J, Li F. Talanta, 2020, 209: 120509-120517. doi:10.1016/j.talanta.2019.120509http://dx.doi.org/10.1016/j.talanta.2019.120509
Iskierko Z, Sharma P S, Prochowicz D, Fronc K, D'Souza F, Toczydlowska D, Stefaniak F, Noworyta K. ACS Appl Mater Interfaces, 2016, 8(31): 19860-19865. doi:10.1021/acsami.6b05515http://dx.doi.org/10.1021/acsami.6b05515
Qian K, Deng Q, Fang G, Wang J, Pan M, Wang S, Pu Y. Biosens Bioelectron, 2016, 79: 359-363. doi:10.1016/j.bios.2015.12.071http://dx.doi.org/10.1016/j.bios.2015.12.071
Yang J, Feng W, Liang K, Chen C, Cai C. Talanta, 2020, 212: 120744-120752. doi:10.1016/j.talanta.2020.120744http://dx.doi.org/10.1016/j.talanta.2020.120744
Qian L, Liu W, Yang M, Nica V, Yang J, Liu H, Ning L, Zhang S, Zhang Q. Talanta, 2020, 217: 121085-121095. doi:10.1016/j.talanta.2020.121085http://dx.doi.org/10.1016/j.talanta.2020.121085
Li X, Zhang B, Tian L, Li W, Zhang H, Zhang Q. Sensor Actuat B-Chem, 2015, 208: 559-568. doi:10.1016/j.snb.2014.11.045http://dx.doi.org/10.1016/j.snb.2014.11.045
Anjum M W, Vermoortele F, Khan A L, Bueken B, Vos D E, Vankelecom I F. ACS Appl Mater Interfaces, 2015, 7(45): 25193-25201. doi:10.1021/acsami.5b08964http://dx.doi.org/10.1021/acsami.5b08964
Yuan G, Tu H, Liu J, Zhao C, Liao J, Yang Y, Yang J, Liu N. Chem Eng J, 2018, 333: 280-288. doi:10.1016/j.cej.2017.09.123http://dx.doi.org/10.1016/j.cej.2017.09.123
Sahiner N. Int J Hydrog Energy, 2018, 43(20): 9687-9695. doi:10.1016/j.ijhydene.2018.04.050http://dx.doi.org/10.1016/j.ijhydene.2018.04.050
Yue W, Li H, Xiang T, Qin H, Sun S, Zhao C. J Membr Sci, 2013, 446: 79-91. doi:10.1016/j.memsci.2013.06.029http://dx.doi.org/10.1016/j.memsci.2013.06.029
Yang J, Yang L, Ye H, Zhao F, Zeng B. Electrochim Acta, 2016, 219: 647-654. doi:10.1016/j.electacta.2016.10.071http://dx.doi.org/10.1016/j.electacta.2016.10.071
Saleem H, Rafique U, Davies R. Microporous Mesoporous Mater, 2016, 221: 238-244. doi:10.1016/j.micromeso.2015.09.043http://dx.doi.org/10.1016/j.micromeso.2015.09.043
Perçin I, Idil N, Denizli A. Process Biochem, 2019, 80: 181-189. doi:10.1016/j.procbio.2019.02.001http://dx.doi.org/10.1016/j.procbio.2019.02.001
Çulha S, Armutcu C, Uzun L, Şenel S, Denizli A. Mater Sci Eng C, 2015, 52: 315-324. doi:10.1016/j.msec.2015.03.059http://dx.doi.org/10.1016/j.msec.2015.03.059
Qian L, Liu W, Liu H, Nica V, Zhang S, Zhoou Q, Song W, Zhang Q. ACS Appl Mater Interfaces, 2021, 13(26): 31010-31020. doi:10.1021/acsami.1c07107http://dx.doi.org/10.1021/acsami.1c07107
Song W, Qian L, Yang Y, Zhao Y, Miao Z, Zhang Q. ACS Appl Mater Interfaces, 2021, 13(45): 54428-54438. doi:10.1021/acsami.1c18296http://dx.doi.org/10.1021/acsami.1c18296
0
浏览量
112
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构