浏览全部资源
扫码关注微信
1.昆明理工大学化学工程学院 昆明 650504
2.华东理工大学机械与动力工程学院 上海 200237
E-mail: sjin@ecust.edu.cn;
E-mail:chentao716@163.com
纸质出版日期:2022-06-20,
网络出版日期:2022-03-08,
收稿日期:2021-12-15,
录用日期:2022-01-24
移动端阅览
赵海利,沙金,谢林生等.基于聚合物刷微图案的生物素化梯度表面制备研究[J].高分子学报,2022,53(06):636-644.
Zhao Hai-li,Sha Jin,Xie Lin-sheng,et al.Fabrication of Biotinylated Gradient Surface Based on the Micropatterned Polymer Brushes[J].ACTA POLYMERICA SINICA,2022,53(06):636-644.
赵海利,沙金,谢林生等.基于聚合物刷微图案的生物素化梯度表面制备研究[J].高分子学报,2022,53(06):636-644. DOI: 10.11777/j.issn1000-3304.2021.21386.
Zhao Hai-li,Sha Jin,Xie Lin-sheng,et al.Fabrication of Biotinylated Gradient Surface Based on the Micropatterned Polymer Brushes[J].ACTA POLYMERICA SINICA,2022,53(06):636-644. DOI: 10.11777/j.issn1000-3304.2021.21386.
提出了基于叠氮功能化聚合物刷微图案制备生物素化梯度表面的方法. 通过数字微镜器件(DMD)调控光辐照引发表面原子转移自由基聚合(ATRP)反应,制备叠氮功能化的聚(2-(2-叠氮-2-甲基丙氧基)甲基丙烯酸乙酯)(PAMEMA)聚合物刷微图案,采用X射线光电子能谱仪(XPS)和飞行时间二次离子质谱仪(TOF-SIMS)对PAMEMA聚合物刷微图案的化学组成及分布进行表征,表明叠氮基团在聚合物刷图案化表面的区域选择性分布;以叠氮基团为反应位点,通过点击化学反应实现PAMEMA聚合物刷微图案表面的生物素化,借助荧光标记的链霉亲和素染色实验表征生物素在微图案表面的分布情况;以具有厚度变化的PAMEMA聚合物刷微图案为模板制备生物素表面,结果表明通过控制聚合物刷的厚度可以对微图案表面固定生物素分子的空间密度进行调控以实现具有复杂结构的生物素化梯度表面的成功制备.
The biotin-avidin reaction system has shown remarkable advantages in immunoassays and biomedical fields due to its high specificity
excellent sensitivity and stability. The ability to generate biotinylated surface with gradient features would further promote the potential application of the biotin-avidin system in various fields ranging from high-throughput analysis to multifunctional biological surface. Here
based on the micropatterned polymer brushes functionalized with azido groups
a promising method was presented for fabricating the biotinylated gradient surfaces. Micropatterned poly(2-(2-azido-2-methyl-1-oxopropoxy) ethyl methacrylate) (PAMEMA) brushes bearing azido groups were fabricated through employing a digital mirror device (DMD)-based light modulation technique to regulate a surface-initiated photoinduced atom transfer radical polymerization (Photo-ATRP) process. X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectrometry (TOF-SIMS) measurements were performed to characterize the surface elemental composition of silicon substrates micropatterned with PAMEMA brushes
whose results indicate the spatially selective distribution of azido groups. The terminal azido groups of PAMEMA brushes could provide reactive sites for covalent immobilization of DBCO-PEG4-biotin through the highly specific orthogonal "click" reaction
leading to the biotinylation of PAMEMA brushes micropatterned surface. The streptavidin-fluorophore conjugate binding experiment was performed to characterize the distribution of biotins on the patterned surface. The fluorescence characterizations demonstrated the functionality of the micropatterned PAMEMA brushes with various thicknesses to regulate the spatial density of immobilized biotins
which resulted in the successful creation of biotinylated gradient surfaces with various complicated structures. The research extends the application of polymer brush micropattern in functional gradient surfaces preparation
and provides fundamental technical support for expanding biotinylated gradient surfaces applications in high-throughput detection chips and combinatorial chemistry.
聚(2-(2-叠氮-2-甲基丙氧基)甲基丙烯酸乙酯)刷微图案叠氮基团点击反应生物素化梯度表面
Poly(2-(2-azido-2-methyl-1-oxopropoxy) ethyl methacrylate) brush micropatternAzido groupClick reactionBiotinylated gradient surface
Narupai B, Page Z A, Treat N J, McGrath A J, Pester C W, Discekici E H, Dolinski N D, Meyers G F, Read de Alaniz J, Hawker C J. Angew Chem Int Ed, 2018, 57(41): 13433-13438. doi:10.1002/anie.201805534http://dx.doi.org/10.1002/anie.201805534
Fors B P, Poelma J E, Menyo M S, Robb M J, Spokoyny D M, Kramer J W, Waite J H, Hawker C J. J Am Chem Soc, 2013, 135(38): 14106-14109. doi:10.1021/ja408467bhttp://dx.doi.org/10.1021/ja408467b
Bhat R R, Chaney B N, Rowley J, Liebmann-Vinson A, Genzer J. Adv Mater, 2005, 17: 2802-2807. doi:10.1002/adma.200500858http://dx.doi.org/10.1002/adma.200500858
Hu Yuanyuan(胡园园), Zhang Chaocan(张超灿), Chen Yanjun(陈艳军), Hu Liang(胡亮), Fan Yanan(范亚男). Acta Polymerica Sinica(高分子学报), 2011, (8): 838-844. doi:10.3724/sp.j.1105.2011.11099http://dx.doi.org/10.3724/sp.j.1105.2011.11099
Wu S, Du W, Duan Y, Zhang D, Liu Y, Wu B, Zou X, Ouyang H, Gao C. Acta Biomater, 2018, 75: 75-92. doi:10.1016/j.actbio.2018.05.046http://dx.doi.org/10.1016/j.actbio.2018.05.046
Masuda T, Akimoto A M, Nagase K, Okano T, Yoshida R. Sci Adv, 2016, 2: 1600902. doi:10.1126/sciadv.1600902http://dx.doi.org/10.1126/sciadv.1600902
Zhou K, Li Y, Zhang L, Jin L, Yuan F, Tan J, Yuan G, Pei J. Bioact Mater, 2021, 6(1): 262-272. doi:10.1016/j.bioactmat.2020.08.004http://dx.doi.org/10.1016/j.bioactmat.2020.08.004
Banuprasad T N, Vinay T V, Subash C K, Varghese S, George S D, Varanakkottu S N. ACS Appl Mater Interfaces, 2017, 9(33): 28046-28054. doi:10.1021/acsami.7b07451http://dx.doi.org/10.1021/acsami.7b07451
Carbonell C, Valles D, Wong A M, Carlini A S, Touve M A, Korpanty J, Gianneschi N C, Braunschweig A B. Nat Commun, 2020, 11(1): 1244. doi:10.1038/s41467-020-14990-xhttp://dx.doi.org/10.1038/s41467-020-14990-x
Rodenstein M, Zürcher S, Tosatti S G P, Spencer N D. Langmuir, 2010, 26(21): 16211-16220. doi:10.1021/la100805zhttp://dx.doi.org/10.1021/la100805z
Coad B R, Bilgic T, Klok H A. Langmuir, 2014, 30(28): 8357-8365. doi:10.1021/la501380mhttp://dx.doi.org/10.1021/la501380m
Yang Q, Wu T, Wang L, Wang Y, Chen Y, Chen L, Lou D, Cheng J, Liu D. Mater Chem Phys, 2021, 270: 124749. doi:10.1016/j.matchemphys.2021.124749http://dx.doi.org/10.1016/j.matchemphys.2021.124749
Zhou X C, Liu X Q, Xie Z, Zheng Z J. Nanoscale, 2011, 3(12): 4929. doi:10.1039/c1nr11238dhttp://dx.doi.org/10.1039/c1nr11238d
Xie Z, Gan T, Fang L, Zhou X. Soft Matter, 2020, 16(38): 8736-8759. doi:10.1039/d0sm01043jhttp://dx.doi.org/10.1039/d0sm01043j
Xue P, Liu W, Gu Z, Chen X, Nan J, Zhang J, Sun H, Cui Z, Yang B. ACS Appl Mater Interfaces, 2018, 11(1): 1595-1603. doi:10.1021/acsami.8b16547http://dx.doi.org/10.1021/acsami.8b16547
Wang C G, Yong H W, Goto A. ACS Appl Mater Interfaces, 2019, 11(15): 14478-14484. doi:10.1021/acsami.9b03570http://dx.doi.org/10.1021/acsami.9b03570
Bog U, de Los Santos Pereira A, Mueller S L, Havenridge S, Parrillo V, Bruns M, Holmes A E, Rodriguez-Emmenegger C, Fuchs H, Hirtz M. ACS Appl Mater Interfaces, 2017, 9(13): 12109-12117. doi:10.1021/acsami.7b01184http://dx.doi.org/10.1021/acsami.7b01184
Liu L, Tian X, Ma Y, Duan Y, Zhao X, Pan G. Angew Chem Int Ed, 2018, 57(26): 7878-7882. doi:10.1002/anie.201804802http://dx.doi.org/10.1002/anie.201804802
Xie Z, Chen C, Zhou X, Gao T, Liu D, Miao Q, Zheng Z. ACS Appl Mater Interfaces, 2014, 6(15): 11955-11964. doi:10.1021/am405555ehttp://dx.doi.org/10.1021/am405555e
Lu Z, Zhang Y, Wang Y, Tan G H, Huang F Y, Cao R, He N, Zhang L. J Control Release, 2021, 332: 245-259. doi:10.1016/j.jconrel.2021.02.029http://dx.doi.org/10.1016/j.jconrel.2021.02.029
Ren D, Xia Y, Wang J, You Z. Sensor Actuat B-Chem, 2013, 188: 340-346. doi:10.1016/j.snb.2013.07.037http://dx.doi.org/10.1016/j.snb.2013.07.037
Chen G, Guo P, Wang Y, Wang L, Shu H, Li Y, Jing W, Chang C, Fu Q. Talanta, 2019, 198: 55-62. doi:10.1016/j.talanta.2019.02.020http://dx.doi.org/10.1016/j.talanta.2019.02.020
Chen H A, Ma Y H, Hsu T Y, Chen J P. Int J Mol Sci, 2020, 21(8): 2690. doi:10.3390/ijms21082690http://dx.doi.org/10.3390/ijms21082690
Liu X, Zheng H N, Ma Y Z, Yan Q, Xiao S J. J Colloid Interf Sci, 2011, 358(1): 116-122. doi:10.1016/j.jcis.2011.03.013http://dx.doi.org/10.1016/j.jcis.2011.03.013
Zhao H L, Sha J, Wu T, Chen T, Chen X, Ji H, Wang Y, Zhu H, Xie L, Ma Y. Appl Surf Sci, 2020, 529: 147056. doi:10.1016/j.apsusc.2020.147056http://dx.doi.org/10.1016/j.apsusc.2020.147056
Parrillo V, de Los Santos Pereira A, Riedel T, Rodriguez-Emmenegger C. Anal Chim Acta, 2017, 971: 78-87. doi:10.1016/j.aca.2017.03.007http://dx.doi.org/10.1016/j.aca.2017.03.007
0
浏览量
228
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构