浏览全部资源
扫码关注微信
1.广东工业大学材料与能源学院 广东省功能软凝聚态物质重点实验室 广州 510006
2.深圳市鹏准模具有限公司 深圳 518108
E-mail: anfuchen@gdut.edu.cn;
E-mail:zhyanmei@gdut.edu.cn
纸质出版日期:2022-06-20,
网络出版日期:2022-04-26,
收稿日期:2021-12-30,
录用日期:2022-03-24
移动端阅览
邢清松,陈旭龙,陶嘉宇等.超声辅助制备超疏水聚丙烯表面花瓣状微纳结构[J].高分子学报,2022,53(06):645-652.
Xing Qing-song,Chen Xu-long,Tao Jia-yu,et al.Ultrasonic Assisted Preparation of Superhydrophobic Polypropylene with Flower-like Micro-/Nanostructure on Surfaces[J].ACTA POLYMERICA SINICA,2022,53(06):645-652.
邢清松,陈旭龙,陶嘉宇等.超声辅助制备超疏水聚丙烯表面花瓣状微纳结构[J].高分子学报,2022,53(06):645-652. DOI: 10.11777/j.issn1000-3304.2021.21403.
Xing Qing-song,Chen Xu-long,Tao Jia-yu,et al.Ultrasonic Assisted Preparation of Superhydrophobic Polypropylene with Flower-like Micro-/Nanostructure on Surfaces[J].ACTA POLYMERICA SINICA,2022,53(06):645-652. DOI: 10.11777/j.issn1000-3304.2021.21403.
超疏水微纳结构表面广泛应用于自清洁、防冰、抗菌、柔性传感等领域,但其制备工艺仍面临一定的挑战. 以阳极氧化铝(AAO)膜为模板,采用热压印在聚丙烯(PP)表面成型了规整的纳米结构阵列. 对纳米结构阵列进行超声处理,在超声空化作用下,PP表面纳米结构转变为类花瓣状微纳结构. 结果表明,经超声处理后的微纳结构PP表面的接触角从152.3°上升至160.0°,滚动角从11.5°降低至1.8°,表面黏附力从75 μN降低至38 μN,呈现典型的超疏水低黏附特性且其自清洁效应明显. 采用模板法与超声辅助相结合的方法制备超疏水微纳表面具有方便快捷、成本低廉、效果显著的优点,有望应用于工业生产领域.
Superhydrophobic micro-/nanostructured surfaces are widely used in the fields of self-cleaning
anti-icing
anti-bacterial and flexible sensor
but there are still some challenges in the preparation methods of these surfaces. In this work
the polypropylene (PP) surfaces with nanostructure arrays were prepared using the hot compression molding with anodic aluminum oxide (AAO) templates. With the ultrasonic-assisted treatment
the nanostructure was transformed onto micro-/nanostructure due to the ultrasonic cavitation effect. The superhydrophobic property of micro-/nanostructured surface was improved after ultrasonic treatment
the contact angle increased from 152.3° to 160.0°
the rolling angle decreased from 11.5° to 1.8°
and the surface adhesion decreased from 75 μN to 38 μN. Moreover
the self-cleaning performance of the micro-/nanostructured PP surface was also better than that of the nanostructured PP surface. The template method combining with the ultrasonic-assisted treatment is convenient
cheap
and effective in the preparation of superhydrophobic micro-/nanostructured surfaces
expecting promising applications in industrial production.
压缩模塑阳极氧化铝超声处理微纳结构超疏水
Compression moldingAnodic aluminum oxideUltrasonic-assisted treatmentMicro-/nanostructureSuperhydrophobic
Arzt E, Quan H C, McMeeking R M, Hensel R. Prog Mater Sci, 2021, 120: 100823. doi:10.1016/j.pmatsci.2021.100823http://dx.doi.org/10.1016/j.pmatsci.2021.100823
Wang B, Zhou X C, Guo Z G, Liu W M. Nano Today, 2021, 40: 101283. doi:10.1016/j.nantod.2021.101283http://dx.doi.org/10.1016/j.nantod.2021.101283
Sun Y H, Guo, Z G. Nanoscale Horiz, 2019, 4(1): 52-76. doi:10.1039/c8nh00223ahttp://dx.doi.org/10.1039/c8nh00223a
Yu C M, Sasic S, Liu K, Salameh S, Ras R H A, van Ommen J R. Chem Eng Res Des, 2020, 155: 48-65. doi:10.1016/j.cherd.2019.11.038http://dx.doi.org/10.1016/j.cherd.2019.11.038
Chen Anfu(陈安伏), Huang Hanxiong(黄汉雄), Guan Weisheng(关伟盛). Acta Polymerica Sinica(高分子学报), 2015, (3): 245-251. doi:10.11777/j.issn1000-3304.2015.14235http://dx.doi.org/10.11777/j.issn1000-3304.2015.14235
Liu J G, Fang X T, Zhu C Y, Xing X, Cui G, Li Z L. Colloid Surf A-Physicochem Eng Asp, 2020, 607: 125498. doi:10.1016/j.colsurfa.2020.125498http://dx.doi.org/10.1016/j.colsurfa.2020.125498
Xie Z T, Wang H, Geng Y, Li M, Deng Q Y, Tian Y, Chen R, Zhu X, Liao Q. ACS Appl Mater Interfaces, 2021, 13(40): 48308-48321. doi:10.1021/acsami.1c15028http://dx.doi.org/10.1021/acsami.1c15028
Zhao Shurui(赵书瑞), Shen Ting(申婷), Li Yutang(李玉堂), Deng Ran(邓然), Yang Haocheng(杨皓程), Li Weihua(李伟华). Acta Polymerica Sinica(高分子学报), 2021, 52(12): 1622-1631. doi:10.11777/j.issn1000-3304.2021.21116http://dx.doi.org/10.11777/j.issn1000-3304.2021.21116
Gu J C, Ji L T, Xiao P, Zhang C, Li J, Yan L K, Chen T. ACS Appl Mater Interfaces, 2021, 13(31): 36679-36696. doi:10.1021/acsami.1c07737http://dx.doi.org/10.1021/acsami.1c07737
Qin Fengming(秦凤鸣), Li Xiangyu(李香玉), Wang Jinyan(王锦艳), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报), 2021, 52(9): 1165-1173. doi:10.11777/j.issn1000-3304.2021.21038http://dx.doi.org/10.11777/j.issn1000-3304.2021.21038
Gao Y N, Wang Y, Yue T N, Weng Y X, Wang M. J Colloid Interface Sci, 2021, 582: 112-123. doi:10.1016/j.jcis.2020.08.037http://dx.doi.org/10.1016/j.jcis.2020.08.037
Li H, Zhu Y J. Energy Environ Mater, 2021, 4(4): 544-561. doi:10.1002/eem2.12158http://dx.doi.org/10.1002/eem2.12158
Erbil H Y. Langmuir, 2020, 36(10): 2493-2509. doi:10.1021/acs.langmuir.9b03908http://dx.doi.org/10.1021/acs.langmuir.9b03908
Parvate S, Dixit P, Chattopadhyay S. J Phys Chem B, 2020, 124(8): 1323-1360. doi:10.1021/acs.jpcb.9b08567http://dx.doi.org/10.1021/acs.jpcb.9b08567
Brock L, Sheng J. Micromachines, 2020, 11(1): 46. doi:10.3390/mi11010046http://dx.doi.org/10.3390/mi11010046
Ho A Y Y, Van E L, Lim C T, Natarajan S, Elmouelhi N, Low H Y, Vyakarnam M, Cooper K, Rodriguez I. J Polym Sci Part B: Polym Phys, 2014, 52(8): 603-609. doi:10.1002/polb.23461http://dx.doi.org/10.1002/polb.23461
Zhang Y M, Liu Z B, Chen A F, Wang Q K, Zhang J J, Zhao C, Xu J B, Yang W T, Peng Y J, Zhang Z R. J Phys Chem C, 2020, 124(11): 6197-6205. doi:10.1021/acs.jpcc.9b12038http://dx.doi.org/10.1021/acs.jpcc.9b12038
Li X H, Ni S Y, Zhou X P. J Nanosci Nanotechnol, 2015, 15(2): 1725. doi:10.1166/jnn.2015.9025http://dx.doi.org/10.1166/jnn.2015.9025
Mason T J. Ultrason Sonochem, 2016, 29: 519-523. doi:10.1016/j.ultsonch.2015.05.004http://dx.doi.org/10.1016/j.ultsonch.2015.05.004
Lv Z, Hou R G, Zhang Z W, Fan Z H. Int J Adv Manuf Technol, 2020, 111(9): 2911-2918. doi:10.1007/s00170-020-06275-whttp://dx.doi.org/10.1007/s00170-020-06275-w
Soyama H. Wear, 2013, 297(1): 895-902. doi:10.1016/j.wear.2012.11.008http://dx.doi.org/10.1016/j.wear.2012.11.008
Chu S Z, Wada K, Inoue S, Isogai M, Katsuta Y, Yasumori A. J Electrochem Soc, 2006, 153(9): B384. doi:10.1149/1.2218822http://dx.doi.org/10.1149/1.2218822
Ji D Y, Lee J W, Hwang W, Lee K Y. Int J Heat Mass Tran, 2019, 134: 286. doi:10.1016/j.ijheatmasstransfer.2019.01.040http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.01.040
Extrand C W. Langmuir, 2003, 19(9): 3793-3796. doi:10.1021/la0268350http://dx.doi.org/10.1021/la0268350
0
浏览量
112
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构