浏览全部资源
扫码关注微信
1.南京邮电大学 有机电子与信息显示国家重点实验室 信息材料与纳米技术研究院 南京 210023
2.西北工业大学柔性电子研究院 西安 710072
3.东南大学附属中大医院眼科 南京 210009
E-mail: iamyqhuang@njupt.edu.cn;
E-mail:provost@nwpu.edu.cn
纸质出版日期:2022-06-20,
网络出版日期:2022-04-27,
收稿日期:2022-01-09,
录用日期:2022-02-21
移动端阅览
黄艳琴,盛况,倪慧琳等.溶剂对聚(对亚苯基亚乙炔基-alt-间亚苯基亚乙炔基)螺旋缠绕单壁碳纳米管的影响[J].高分子学报,2022,53(06):683-690.
Huang Yan-qin,Sheng Kuang,Ni Hui-lin,et al.Effects of Solvent on Helical Wrapping of Single-walled Carbon Nanotubes by Poly(p-phenyleneethynylene-alt-m-phenyleneethynylene)[J].ACTA POLYMERICA SINICA,2022,53(06):683-690.
黄艳琴,盛况,倪慧琳等.溶剂对聚(对亚苯基亚乙炔基-alt-间亚苯基亚乙炔基)螺旋缠绕单壁碳纳米管的影响[J].高分子学报,2022,53(06):683-690. DOI: 10.11777/j.issn1000-3304.2022.22009.
Huang Yan-qin,Sheng Kuang,Ni Hui-lin,et al.Effects of Solvent on Helical Wrapping of Single-walled Carbon Nanotubes by Poly(p-phenyleneethynylene-alt-m-phenyleneethynylene)[J].ACTA POLYMERICA SINICA,2022,53(06):683-690. DOI: 10.11777/j.issn1000-3304.2022.22009.
水溶性聚(对亚苯基亚乙炔基-
alt
-间亚苯基亚乙炔基) (meta-PPEs)可与单壁碳纳米管(SWCNTs)组装成螺旋缠绕复合结构,从而改善SWCNTs的溶解性并实现选择性分离. 为深入理解这种明确形态超分子结构的形成机理,本文利用阳离子型水溶性meta-PPE-N
+
Et
2
Me与SWCNTs在不同比例二甲基亚砜/水(DMSO/H
2
O)的混合溶剂中制备复合材料,深入探索聚合物结构、溶剂成分对复合结构形态和稳定性的影响. 通过紫外-可见-近红外吸收光谱、荧光发射光谱、透射电镜、拉曼光谱和红外光谱等研究表明,当DMSO比例为70%时,该聚合物呈现从无规线团到螺旋构象的突变;此时自组装形成螺旋构象的驱动力较大,因此聚合物在自身开始形成螺旋疏水空腔的过程中对SWCNTs产生螺旋缠绕,疏水效应和
π
-
π
作用进一步增强,形成稳定的复合材料;然而在其他比例混合溶剂中并没有形成明显的螺旋缠绕超分子结构. 该研究结果将为SWCNTs的可控修饰和应用提升提供一定的理论指导.
Water-soluble poly(
p
-phenyleneethynylene-
alt
-
m
-phenyleneethynylene)s (meta-PPEs) can wrap single-walled carbon nanotubes (SWCNTs) helicall
y to improve the solubility of SWCNTs and realize highly selective dispersion. In order to deeply understand the formation mechanism of such well-defined supermolecular structure
we prepared the composites of SWCNTs and the cationic water-soluble meta-PPE-N
+
Et
2
Me in DMSO/H
2
O mixed solvents with different ratios. The effects of polymer structure and composition of mixed solvents on the morphology and stability of the composite structure were deeply explored. Studies on the ultraviolet-visible-near infrared absorption spectroscopy
fluorescence spectroscopy
transmission electron microscopy
Raman spectroscopy and infrared spectroscopy showed that
when the ratio of DMSO was 70%
the polymer exhibited a sudden change from random coil to helical conformation. At this time
the driving force to self-assemble into helical conformation was relatively large
so the polymer wrapped SWCNTs helically in the process of forming a helical hydrophobic cavity itself
and the hydrophobic effect and
π
-
π
interaction were further enhanced to form a stable composite. However
no obvious helical wrapping supermolecular structure was formed in the mixed solvents with other ratios. These results will provide some theoretical guidance for the controllable modification and application improvement of SWCNTs.
单壁碳纳米管水溶性聚(亚苯基亚乙炔基)复合材料螺旋缠绕
Single-walled carbon nanotubesWater-soluble poly(phenyleneethylene)sCompositeHelical wrapping
Negri V, Pacheco-Torres J, Calle D, Lopez-Larrubia P. Top Curr Chem, 2020, 378(1): 15. doi:10.1007/s41061-019-0278-8http://dx.doi.org/10.1007/s41061-019-0278-8
Camilli L, Passacantando M. Chemosensors, 2018, 6(4): 62. doi:10.3390/chemosensors6040062http://dx.doi.org/10.3390/chemosensors6040062
Chen Y, Chen H T, Gui H, Liu J, Liu B L, Zhou C W. Semicond Sci Tech, 2014, 29(7): 073001. doi:10.1088/0268-1242/29/7/073001http://dx.doi.org/10.1088/0268-1242/29/7/073001
Wang G H, Zhang F, Tian R, Zhang L W, Fu G F, Yang L L, Zhu L. ACS Appl Mater Interfaces, 2016, 8(8): 5608-5617. doi:10.1021/acsami.5b12400http://dx.doi.org/10.1021/acsami.5b12400
Wang D Q, Meng L J, Fei Z F, Hou C, Long J G, Zeng L, Dyson P J, Huang P. Nanoscale, 2018, 10(18): 8536-8546. doi:10.1039/c8nr00663fhttp://dx.doi.org/10.1039/c8nr00663f
Li Z X, de Barros A L B, Soares D C F, Moss S N, Alisaraie L. Int J Pharm, 2017, 524(1-2): 41-54. doi:10.1016/j.ijpharm.2017.03.017http://dx.doi.org/10.1016/j.ijpharm.2017.03.017
Zhao Y L, Stoddart J F. Accounts Chem Res, 2009, 42(8): 1161-1171. doi:10.1021/ar900056zhttp://dx.doi.org/10.1021/ar900056z
Samanta S K, Fritsch M, Scherf U, Gomulya W, Bisri S Z, Loi M A. Acc Chem Res, 2014, 47(8): 2446-2456. doi:10.1021/ar500141jhttp://dx.doi.org/10.1021/ar500141j
Zhang S, Bunz U H F, Bucknall D G. J Compos Sci, 2021, 5(6): 158. doi:10.3390/jcs5060158http://dx.doi.org/10.3390/jcs5060158
Wang H L, Bao Z N. Nano Today, 2015, 10(6): 737-758. doi:10.1016/j.nantod.2015.11.008http://dx.doi.org/10.1016/j.nantod.2015.11.008
Jakubka F, Schiessl S P, Martin S, Englert J M, Hauke F, Hirsch A, Zaumseil J. ACS Macro Lett, 2012, 1(7): 815-819. doi:10.1021/mz300147ghttp://dx.doi.org/10.1021/mz300147g
Yang Y, Li R M, Wang W, Xu Z W, Xie G H, Lu Z Q, Li J J, Song L P, Li W S. Chin J Org Chem, 2020, 40(10): 3249-3261. doi:10.6023/cjoc202006019http://dx.doi.org/10.6023/cjoc202006019
Aumaitre C, Fong D, Adronov A, Morin J F. Polym Chem, 2019, 10(47): 6440-6446. doi:10.1039/c9py01603ahttp://dx.doi.org/10.1039/c9py01603a
Gifford B J, Weight B M, Kilina S. J Phys Chem C, 2019, 123(40): 24807-24817. doi:10.1021/acs.jpcc.9b04869http://dx.doi.org/10.1021/acs.jpcc.9b04869
Thomas S W, Joly G D, Swager T M. Chem Rev, 2007, 107(4): 1339-1386. doi:10.1021/cr0501339http://dx.doi.org/10.1021/cr0501339
Zhu C L, Liu L B, Yang Q, Lv F T, Wang S. Chem Rev, 2012, 112(8): 4687-4735. doi:10.1021/cr200263whttp://dx.doi.org/10.1021/cr200263w
D'Olieslaeger L, Braekenb Y, Cheruku S, Smits J, Ameloot M, Vanderzande D, Maes W, Ethirajan A. J Colloid Interface Sci, 2017, 504: 527-537. doi:10.1016/j.jcis.2017.05.072http://dx.doi.org/10.1016/j.jcis.2017.05.072
Kang Y K, Lee O S, Deria P, Kim S H, Park T H, Bonnell D A, Saven J G, Therien M J. Nano Lett, 2009, 9(4): 1414-1418. doi:10.1021/nl8032334http://dx.doi.org/10.1021/nl8032334
Chen Y S, Xu Y Q, Wang Q M, Gunasinghe R N, Wang X Q, Pang Y. Small, 2013, 9(6): 870-875. doi:10.1002/smll.201202103http://dx.doi.org/10.1002/smll.201202103
Von Bargen C D, MacDermaid C M, Lee O S, Deria P, Therien M J, Saven J G. J Phys Chem B, 2013, 117(42): 12953-12965. doi:10.1021/jp402140thttp://dx.doi.org/10.1021/jp402140t
Ezzeddine A, Chen Z, Schanze K S, Khashab N M. ACS Appl Mater Interfaces, 2015, 7(23): 12903-12913. doi:10.1021/acsami.5b02540http://dx.doi.org/10.1021/acsami.5b02540
Huang Y Q, Zhong Y Y, Zhang R, Zhao Y K, Liu X F, Zhang G W, Fan Q L, Wang L H, Huang W. Polymer, 2016, 102: 143-152. doi:10.1016/j.polymer.2016.08.044http://dx.doi.org/10.1016/j.polymer.2016.08.044
Saebo S, Almlof J , Boggs J E, Stark J G. J Mol Struct-Theochem, 1989, 59: 361-373. doi:10.1016/0166-1280(89)85066-3http://dx.doi.org/10.1016/0166-1280(89)85066-3
Bunz U H F. Macromol Rapid Commun, 2009, 30(9-10): 772-805. doi:10.1002/marc.200800775http://dx.doi.org/10.1002/marc.200800775
Huang Y Q, Fan Q L, Liu X F, Fu N N, Huang W. Langmuir, 2010, 26(24): 19120-19128. doi:10.1021/la103394chttp://dx.doi.org/10.1021/la103394c
Fu Chuanlong(伏传龙). Study on Functionalization of Single-walled Carbon Nanotubes(单壁碳纳米管功能化的研究). Doctoral Dissertation of Shanghai Jiao Tong University(上海交通大学博士学位论文), 2008
Tan C, Pinto M R, Kose M E, Ghiviriga I, Schanze K S. Adv Mater, 2004, 16, 1208-1212. doi:10.1002/adma.200306711http://dx.doi.org/10.1002/adma.200306711
Hwang J Y, Nish A, Doig J, Douven S, Chen C W, Chen L C, Nicholas R J. J Am Chem Soc, 2008, 130(11): 3543-3553. doi:10.1021/ja0777640http://dx.doi.org/10.1021/ja0777640
Swierczewska M, Choi K Y, Mertz E L, Huang X L, Zhang F, Zhu L, Yoon H Y, Park J H, Bhirde A, Lee S, Chen X Y. Nano Lett, 2012, 12(7): 3613-3620. doi:10.1021/nl301309ghttp://dx.doi.org/10.1021/nl301309g
Yang J, Lee J, Lee J, Yi W. Diam Relat Mat, 2020, 101: 107554. doi:10.1016/j.diamond.2019.107554http://dx.doi.org/10.1016/j.diamond.2019.107554
ZhaoHui(赵辉). Synthesis of Functionalized Poly(phenylacetylene) and Their Hybrids with Carbon Nanotubes(功能化聚苯乙炔的合成及其与碳纳米管的复合). Doctoral Dissertation of Zhejiang University(浙江大学博士学位论文), 2010
0
浏览量
73
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构