浏览全部资源
扫码关注微信
武汉大学 生物医用高分子材料教育部重点实验室 化学与分子科学学院 武汉 430072
E-mail: xz-zhang@whu.edu.cn
纸质出版日期:2022-06-20,
网络出版日期:2022-04-22,
收稿日期:2022-01-18,
录用日期:2022-03-04
移动端阅览
韩子意,白雪峰,王钰璋等.用于增强结肠癌化疗的肠道菌群葡萄糖醛酸酶响应甘草酸胶束[J].高分子学报,2022,53(06):626-635.
Han Zi-yi,Bai Xue-feng,Wang Yu-zhang,et al.Gut Microbial Glucuronidase-responsive Glycyrrhizin Micelles for Enhanced Colon Cancer Chemotherapy[J].ACTA POLYMERICA SINICA,2022,53(06):626-635.
韩子意,白雪峰,王钰璋等.用于增强结肠癌化疗的肠道菌群葡萄糖醛酸酶响应甘草酸胶束[J].高分子学报,2022,53(06):626-635. DOI: 10.11777/j.issn1000-3304.2022.22021.
Han Zi-yi,Bai Xue-feng,Wang Yu-zhang,et al.Gut Microbial Glucuronidase-responsive Glycyrrhizin Micelles for Enhanced Colon Cancer Chemotherapy[J].ACTA POLYMERICA SINICA,2022,53(06):626-635. DOI: 10.11777/j.issn1000-3304.2022.22021.
肿瘤细胞表面过表达P-糖蛋白(P-gp)是导致肿瘤化疗耐药的重要原因. 抑制P-gp表达能有效增强化疗效果. 为克服结肠癌化疗耐药,本研究设计、制备了一种肠道菌群葡萄糖醛酸酶响应的甘草酸胶束用于递送化疗药物和原位产生P-gp抑制剂. 通过自组装,甘草酸(glycyrrhizin
GL)形成胶束,包载疏水性药物阿霉素(doxorubicin
DOX);在GL胶束表面静电交联正电性壳聚糖(chitosan
CS),构建DOX@GLCS胶束. 在原位结肠癌小鼠模型中,口服DOX@GLCS胶束后,其在胃和小肠中保持稳定,在富含细菌的结肠和肿瘤区域被特异性降解,释放化疗药物阿霉素. 同时,细菌分泌的葡萄糖醛酸酶可以转化GL生成P-gp抑制剂甘草次酸(glycyrrhetinic acid
GA),抑制肿瘤细胞P-gp表达,增加药物的细胞内浓度. 经DOX@GLCS治疗后,小鼠肿瘤负荷明显降低,受损肠道黏膜得到修复. 该肠道菌群响应释药策略为克服结肠癌化疗耐药提供了一种新思路.
Although chemotherapy is currently the most widely used treatment for colon cancer
it is still severely limited by poor therapeutic efficacy and inevitable side effects. Specially
tumor cells gradually appear insensitive for chemotherapeutics after repeated drug mediation. The overexpression of P-glycoprotein (P-gp) in tumor cells
which significantly reduces intracellular drug concentration
is the most popular cause of chemotherapy resistance. Here
we designed and prepared gut microbial glucuronidase-responsive glycyrrhizin micelles for delivery of a chemotherapeutic drug and
in situ
generation of P-gp inhibitor to overcome colon cancer chemotherapy resistance and to enhance the chemotherapy effect. Glycyrrhizin (GL) micelles prepared by self-assembly were used to load hydrophobic drug doxorubicin (DOX). Sequentially
chitosan (CS) was electrostatically crosslinke
d on the surface of GL micelles to construct DOX@GLCS micelles. The results showed that micelles were about 165 nm with promising dispersibility and stability. With the presence of glucuronidase secreted by gut microbes
DOX@GLCS micelles were degraded to release DOX. Meanwhile
GL was converted into glycyrrhetinic acid (GA)
which was a potent P-gp inhibitor to decline P-gp expression and enhance intracellular drug accumulation. Compared to free DOX
DOX@GLCS micelles exerted suprior cytotoxicity to colon cancer CT26 cells as well as DOX-ressitant CT26 cells. In two orthotopic colon cancer-bearing mice models
oral administration of DOX@GLCS micelles significantly inhibited tumoral P-gp expression and suppressed tumor growth. Moreover
owing to the regulatory effect of prebiotic chitosan
DOX@GLCS treatment effecively repaired damaged intestinal mucosa. Overall
this gut microbiota-responsive drug delivery system provides a new perspective for augmented CRC chemotherapy.
肠道菌群甘草酸甘草次酸P-糖蛋白化疗
Gut microbiotaGlycyrrhizinGlycyrrhetinic acidP-gpChemotherapy
Keum N, Giovannucci E. Nat Rev Gastroenterol Hepatol, 2019, 16: 713-732. doi:10.1038/s41575-019-0189-8http://dx.doi.org/10.1038/s41575-019-0189-8
Hammond W A, Swaika A, Mody K. Ther Adv Med Oncol, 2016, 8: 57-84. doi:10.1177/1758834015614530http://dx.doi.org/10.1177/1758834015614530
Binkhathlan Z, Lavasanifar A. Curr Cancer Drug Targets, 2013, 3: 326-346. doi:10.2174/15680096113139990076http://dx.doi.org/10.2174/15680096113139990076
lmeliegy M, Vourvahis M, Guo C, Wang D D. Clin Pharmacokinet, 2020, 59: 699-714. doi:10.1007/s40262-020-00867-1http://dx.doi.org/10.1007/s40262-020-00867-1
Schirrmacher V. Int J Oncol, 2019, 54: 407-419
Gandhi N S, Tekade R K, Chougule M B. J Control Release, 2014, 194: 238-256. doi:10.1016/j.jconrel.2014.09.001http://dx.doi.org/10.1016/j.jconrel.2014.09.001
He C B, Lu K D, Liu D M, Lin W B. J Am Chem Soc, 2014, 13: 5181-5184. doi:10.1021/ja4098862http://dx.doi.org/10.1021/ja4098862
Zou M Z, Liu W L, Chen H S, Bai X F, Gao F, Ye J J, Cheng H, Zhang X Z. Natl Sci Rev, 2020, 8: nwaa160. doi:10.1093/nsr/nwaa160http://dx.doi.org/10.1093/nsr/nwaa160
Tang J, Zhang L, Gao H L, Liu Y Y, Zhang Q Y, Ran R, Zhang Z R, He Q. Drug Deliv, 2016, 23: 1130-1143. doi:10.3109/10717544.2014.990651http://dx.doi.org/10.3109/10717544.2014.990651
Duan X P, Xiao J S, Yin Q, Zhang Z W, Yu H J, Mao S R, Li Y P. ACS Nano, 2013, 7: 5858-5868. doi:10.1021/nn4010796http://dx.doi.org/10.1021/nn4010796
Jiao Zixue(焦自学), Chen Jie(陈杰), Tian Huayu(田华雨), Chen Xuesi(陈学思). Acta Polymerica Sinica(高分子学报), 2015, (1): 127-132. doi:10.11777/j.issn1000-3304.2015.14259http://dx.doi.org/10.11777/j.issn1000-3304.2015.14259
Shi J J, Kantoff P W, Wooster R, Farokhzad O C. Nat Rev Cancer, 2017, 17: 20-37. doi:10.1038/nrc.2016.108http://dx.doi.org/10.1038/nrc.2016.108
Zhu L J, Guo Y Y, Qian Q H, Yan D Y, Li Y H, Zhu X Y, Zhang C. Angew Chem Int Ed, 2020, 59: 17944-17950. doi:10.1002/anie.202006895http://dx.doi.org/10.1002/anie.202006895
Nguyen G N, Everett J K, Kafle S, Roche A M, Raymond H E, Leiby J, Wood C, Assenmacher C A, Merricks E P, Long C T, Kazazian H H, Nichols T C, Timothy C, Bushman F D, Sabatino D E. Nat Biotechnol, 2021, 39: 47-55. doi:10.1038/s41587-020-0741-7http://dx.doi.org/10.1038/s41587-020-0741-7
Liu Chang(刘畅), Chen Yuxin(陈宇欣), Wang Jiangfan(王江帆), Luo Xuan(罗萱), Huang Yudi(黄宇迪), Xu Jinlei(徐瑾蕾), Yan Guoping(鄢国平), Chen Si(陈思), Zhang Xianzheng(张先正). Acta Polymerica Sinica(高分子学报), 2018, (6): 682-691. doi:10.11777/j.issn1000-3304.2017.17335http://dx.doi.org/10.11777/j.issn1000-3304.2017.17335
Hong S, Huang Q X, Zhong Z L, Rong L, Zhang X Z. CCS Chem, 2021, 3: 1893-1910. doi:10.31635/ccschem.020.202000346http://dx.doi.org/10.31635/ccschem.020.202000346
Janney A, Powrie F, Mann E H. Nature, 2020, 585: 509-517. doi:10.1038/s41586-020-2729-3http://dx.doi.org/10.1038/s41586-020-2729-3
Louis P, Hold G L, Flint H J. Nat Rev Microbiol, 2014, 12: 661-672. doi:10.1038/nrmicro3344http://dx.doi.org/10.1038/nrmicro3344
Sears C L, Garrett W S. Cell Host Microbe, 2014, 15: 317-328. doi:10.1016/j.chom.2014.02.007http://dx.doi.org/10.1016/j.chom.2014.02.007
Su X T, Wu L, Hu M M, Dong W X, Xu M, Zhang P. Biomed Pharmacother, 2017, 95: 670-678. doi:10.1016/j.biopha.2017.08.123http://dx.doi.org/10.1016/j.biopha.2017.08.123
Yang F H, Zhang Q, Liang Q Y, Wang S Q, Zhao B X, Wang Y T, Cai Y, Li G F. Molecules, 2015, 20: 4337-4356. doi:10.3390/molecules20034337http://dx.doi.org/10.3390/molecules20034337
Zhao Z Q, Zhang X B, Zhang H Y, Shan X Z, Bai M Y, Wang Z, Yang F J, Zhang H T, Kan Q M, Sun B J, Sun J, He Z G, Luo Cong. Adv Sci, 2022, 9: e2104264. doi:10.1002/advs.202104264http://dx.doi.org/10.1002/advs.202104264
Zhang P F, Wang J Q, Chen H, Zhao L, Chen B B, Chu C C, Liu H, Qin Z N, Liu J Y, Tan Y Z, Chen X Y, Liu G. J Am Chem Soc, 2018, 7: 14980-14989. doi:10.1021/jacs.8b09396http://dx.doi.org/10.1021/jacs.8b09396
Mei L, Zhang Z P, Zhao L Y, Huang L Q, Yang X L, Tang J T, Feng S S. Adv Drug Deliver Rev, 2013, 65: 880-890. doi:10.1016/j.addr.2012.11.005http://dx.doi.org/10.1016/j.addr.2012.11.005
Cheng C M, Chen F M, Lu Y L, Tzou S C, Wang J Y, Kao C H, Chen B M, Roffler S, Cheng T L. Cancer Gene Ther, 2013, 20: 276-281. doi:10.1038/cgt.2013.17http://dx.doi.org/10.1038/cgt.2013.17
Dinic J, Podolski-Renic A, Stankovic T, Bankovic J, Pesic M. Curr Pharm Des, 2015, 21: 5589-5604. doi:10.2174/1381612821666151002113546http://dx.doi.org/10.2174/1381612821666151002113546
Ahmed T A, Aljaeid B M. Drug Des Devel Ther, 2016, 10: 483-507. doi:10.36959/426/1/1http://dx.doi.org/10.36959/426/1/1
Lee Y, Kamada N, Moon J J. Adv Drug Deliv Rev, 2021, 179: 114021. doi:10.1016/j.addr.2021.114021http://dx.doi.org/10.1016/j.addr.2021.114021
Han Han(韩晗), Li Ying(李营), Yuan Jinfang(袁金芳), Gao Qingyu(高青雨). Acta Polymerica Sinica(高分子学报), 2015, (9): 1100-1106. doi:10.11777/j.issn1000-3304.2015.15031http://dx.doi.org/10.11777/j.issn1000-3304.2015.15031
Guo H H, Ma C, Zheng W S, Luo Y, Li C, Li X L, Ma X L, Feng C L, Zhang T T, Han Y X, Luo Z G, Zhan Y, Li R, Wang L L, Jiang J D. Adv Funct Mater, 2019, 29: 1808197. doi:10.1002/adfm.201808197http://dx.doi.org/10.1002/adfm.201808197
Krahenbuhl S, Hasler F, Krapf R. Steroids, 1994, 59: 121-126. doi:10.1016/0039-128x(94)90088-4http://dx.doi.org/10.1016/0039-128x(94)90088-4
Lee Y, Sugihara K, Gillilland M G, Jon S, Kamada N, Moon J J. Nat Mater, 2020, 19: 118-126. doi:10.1038/s41563-019-0462-9http://dx.doi.org/10.1038/s41563-019-0462-9
0
浏览量
156
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构