浏览全部资源
扫码关注微信
上海交通大学化学化工学院 上海 200240
[ "颜徐州,男,1986年生. 上海交通大学化学化工学院研究员,博士生导师. 2009年获得浙江理工大学学士学位,2014年获得浙江大学博士学位. 2014~2018年分别在美国犹他大学和斯坦福大学从事博士后研究工作. 2018年9月入职上海交通大学开展独立研究工作. 2018年入选上海市高校特聘教授(东方学者)支持计划,2021年获得国家自然科学基金优秀青年科学基金资助. 主要研究方向为动态高分子材料和机械互锁聚合物." ]
纸质出版日期:2022-07-20,
网络出版日期:2022-05-13,
收稿日期:2022-02-23,
录用日期:2022-03-24
移动端阅览
张照明,赵骏,颜徐州.协同的共价-超分子聚合物[J].高分子学报,2022,53(07):691-706.
Zhang Zhao-ming,Zhao Jun,Yan Xu-zhou.Synergistic Covalent-and-Supramolecular Polymers[J].ACTA POLYMERICA SINICA,2022,53(07):691-706.
张照明,赵骏,颜徐州.协同的共价-超分子聚合物[J].高分子学报,2022,53(07):691-706. DOI: 10.11777/j.issn1000-3304.2022.22049.
Zhang Zhao-ming,Zhao Jun,Yan Xu-zhou.Synergistic Covalent-and-Supramolecular Polymers[J].ACTA POLYMERICA SINICA,2022,53(07):691-706. DOI: 10.11777/j.issn1000-3304.2022.22049.
共价聚合物性质稳定但缺乏动态性,超分子聚合物动态性有余而机械性能不足. 受生命体中超分子聚合物工作机制的启发,我们将共价聚合物和超分子聚合物整合到同一体系,并采用有效的连接方式将两者关联,进而融合甚至放大2种聚合物的性能优势,发展了协同的共价-超分子聚合物. 本文从协同的共价-超分子聚合物的概念及特点出发,介绍了这一特殊形式的聚合物. 然后,总结了现有的用于构筑协同的共价-超分子聚合物的聚合策略. 进一步地,重点介绍了协同聚合物的结构和性能表现,阐明协同聚合物的性能优势和构效关系. 最后,指出了协同聚合物未来发展所面临的关键问题和重要挑战. 协同的共价-超分子聚合物体系的提出,可用于克服单一聚合物体系存在的固有缺陷,推动实现超分子聚合物的现实应用,也为发展机械性能和动态性俱佳的智能高分子材料提供新思路.
Covalent polymers are robust but not adaptive
while supramolecular polymers have fantastic dynamic properties but lack good mechanical properties
which limit their applications in specific fields. Inspired by the working mechanism of the supramolecular polymers in living organisms
covalent polymers and supramolecular polymers are integrated into one system and connect with each other by effective interactions to afford a new fashion of polymeric system named as synergistic covalent-and-supramolecular polymers (CSPs)
which can combine and even amplify the merits of the two kinds of polymers. This article first introduces the definition and features of CSPs. Then we summarize the current synthetic strategies for the synergistic CSPs. Further
the structures and properties of synergistic CSPs are emphasized to establish their relationships and elucidate property advantages of synergistic CSPs. Finally
the key scientific issues and challenges in the field of synergistic CSPs are discussed. Synergistic CSPs are beneficial to remedy the deficiencies of individual polymer
and thus prompt the practical applications of supramolecular polymers. Furthermore
it also provides a new approach to preparing polymeric materials with mechanically robust yet dynamic properties.
协同效应超分子聚合物非共价键机械性能动态材料
Synergistic effectSupramolecular polymersNon-covalent interactionsMechanical propertiesDynamic materials
Staudinger H. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 1920, 53(6): 1073-1085. doi:10.1002/cber.19200530627http://dx.doi.org/10.1002/cber.19200530627
Fouquey C, Lehn J M, Levelut A M. Adv Mater, 1990, 2(5): 254-257. doi:10.1002/adma.19900020506http://dx.doi.org/10.1002/adma.19900020506
Brunsveld L, Folmer B J B, Meijer E W, Sijbesma R P. Chem Rev, 2001, 101(12): 4071-4098. doi:10.1021/cr990125qhttp://dx.doi.org/10.1021/cr990125q
Lehn J M. Prog Polym Sci, 2005, 30(8-9): 814-831. doi:10.1016/j.progpolymsci.2005.06.002http://dx.doi.org/10.1016/j.progpolymsci.2005.06.002
de Greef T F, Meijer E W. Nature, 2008, 453(7192): 171-173. doi:10.1038/453171ahttp://dx.doi.org/10.1038/453171a
de Greef T F, Smulders M M, Wolffs M, Schenning A P, Sijbesma R P, Meijer E W. Chem Rev, 2009, 109(11): 5687-5754. doi:10.1021/cr900181uhttp://dx.doi.org/10.1021/cr900181u
Appel E A, del Barrio J, Loh X J, Scherman O A. Chem Soc Rev, 2012, 41(18): 6195-6214. doi:10.1039/c2cs35264hhttp://dx.doi.org/10.1039/c2cs35264h
Yang L, Tan X, Wang Z, Zhang X. Chem Rev, 2015, 115(15): 7196-7239. doi:10.1021/cr500633bhttp://dx.doi.org/10.1021/cr500633b
Krieg E, Bastings M M, Besenius P, Rybtchinski B. Chem Rev, 2016, 116(4): 2414-2477. doi:10.1021/acs.chemrev.5b00369http://dx.doi.org/10.1021/acs.chemrev.5b00369
Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37-49. doi:10.11777/j.issn1000-3004.2017.16235http://dx.doi.org/10.11777/j.issn1000-3004.2017.16235
Qin B, Yin Z, Tang X, Zhang S, Wu Y, Xu J F, Zhang X. Prog Polym Sci, 2019, 100: 101167. doi:10.1016/j.progpolymsci.2019.101167http://dx.doi.org/10.1016/j.progpolymsci.2019.101167
Zhang Xi(张希), Wang Liyan(王力彦), Xu Jiangfei(徐江飞), Chen Daoyong(陈道勇), Shi Linqi(史林启), Zhou Yongfeng(周永丰), Shen Zhihao(沈志豪). Acta Polymerica Sinica(高分子学报), 2019, (10): 973-987. doi:10.11777/j.issn1000-3304.2019.19109http://dx.doi.org/10.11777/j.issn1000-3304.2019.19109
Chen S G, Yu Y, Zhao X, Ma Y, Jiang X K, Li Z T. J Am Chem Soc, 2011, 133(29): 11124-11127. doi:10.1021/ja205059zhttp://dx.doi.org/10.1021/ja205059z
Teunissen A J, Paffen T F, Ercolani G, de Greef T F, Meijer E W. J Am Chem Soc, 2016, 138(21): 6852-6860. doi:10.1021/jacs.6b03421http://dx.doi.org/10.1021/jacs.6b03421
Balkenende D W, Monnier C A, Fiore G L, Weder C. Nat Commun, 2016, 7: 10995. doi:10.1038/ncomms10995http://dx.doi.org/10.1038/ncomms10995
Burnworth M, Tang L, Kumpfer J R, Duncan A J, Beyer F L, Fiore G L, Rowan S J, Weder C. Nature, 2011, 472(7343): 334-337. doi:10.1038/nature09963http://dx.doi.org/10.1038/nature09963
Zhou Z, Yan X, Cook T R, Saha M L, Stang P J. J Am Chem Soc, 2016, 138(3): 806-809. doi:10.1021/jacs.5b12986http://dx.doi.org/10.1021/jacs.5b12986
Zhang Q, Shi C Y, Qu D H, Long Y T, Feringa B L, Tian H. Sci Adv, 2018, 4(7): eaat8192. doi:10.1126/sciadv.aat8192http://dx.doi.org/10.1126/sciadv.aat8192
Zhang M, Yan X, Huang F, Niu Z, Gibson H W. Acc Chem Res, 2014, 47(7): 1995-2005. doi:10.1021/ar500046rhttp://dx.doi.org/10.1021/ar500046r
Gao Z, Han Y, Gao Z, Wang F. Acc Chem Res, 2018, 51(11): 2719-2729. doi:10.1021/acs.accounts.8b00340http://dx.doi.org/10.1021/acs.accounts.8b00340
Dai D, Li Z, Yang J, Wang C, Wu J R, Wang Y, Zhang D, Yang Y W. J Am Chem Soc, 2019, 141(11): 4756-4763. doi:10.1021/jacs.9b01546http://dx.doi.org/10.1021/jacs.9b01546
Kulkarni C, Korevaar P A, Bejagam K K, Palmans A R, Meijer E W, George S J. J Am Chem Soc, 2017, 139(39): 13867-13875. doi:10.1021/jacs.7b07639http://dx.doi.org/10.1021/jacs.7b07639
Rao K V, Miyajima D, Nihonyanagi A, Aida T. Nat Chem, 2017, 9(11): 1133-1139 doi:10.1038/NCHEM.2812http://dx.doi.org/10.1038/NCHEM.2812
Yagai S, Kitamoto Y, Datta S, Adhikari B. Acc Chem Res, 2019, 52(5): 1325-1335. doi:10.1021/acs.accounts.8b00660http://dx.doi.org/10.1021/acs.accounts.8b00660
Ustinov A, Weissman H, Shirman E, Pinkas I, Zuo X, Rybtchinski B. J Am Chem Soc, 2011, 133(40): 16201-16211. doi:10.1021/ja2066225http://dx.doi.org/10.1021/ja2066225
Ma X, Tian H. Acc Chem Res, 2014, 47(7): 1971-1981. doi:10.1021/ar500033nhttp://dx.doi.org/10.1021/ar500033n
Han W, Xiang W, Li Q, Zhang H, Yang Y, Shi J, Ji Yue, Wang S H, Ji X F, Khashab N M, Sessler J L. Chem Soc Rev, 2021, 50(18): 10025-10043. doi:10.1039/d1cs00187fhttp://dx.doi.org/10.1039/d1cs00187f
Yan X, Wang F, Zheng B, Huang F. Chem Soc Rev, 2012, 41(18): 6042-6065. doi:10.1039/c2cs35091bhttp://dx.doi.org/10.1039/c2cs35091b
de Espinosa L M, Fiore G L, Weder C, Foster E J, Simon Y C. Prog Polym Sci, 2015, 49: 60-78. doi:10.1016/j.progpolymsci.2015.04.003http://dx.doi.org/10.1016/j.progpolymsci.2015.04.003
Webber M J, Appel E A, Meijer E W, Langer R. Nat Mater, 2016, 15(1): 13-26. doi:10.1038/nmat4474http://dx.doi.org/10.1038/nmat4474
Heinzmann C, Weder C, de Espinosa L M. Chem Soc Rev, 2016, 45(2): 342-358. doi:10.1039/c5cs00477bhttp://dx.doi.org/10.1039/c5cs00477b
Shigemitsu H, Hamachi I. Acc Chem Res, 2017, 50(4): 740-750. doi:10.1021/acs.accounts.7b00070http://dx.doi.org/10.1021/acs.accounts.7b00070
Ji Xiaofan(吉晓帆), Xia Danyu(夏丹玉), Yan Xuzhou(颜徐州), Wang Hu(王虎), Huang Feihe(黄飞鹤). Acta Polymerica Sinica(高分子学报), 2017, (1): 9-18. doi:10.11777/j.issn1000-3304.2017.16167http://dx.doi.org/10.11777/j.issn1000-3304.2017.16167
Wang H, Ji X, Li Z, Huang F. Adv Mater, 2017, 29(14): 1606117. doi:10.1002/adma.201606117http://dx.doi.org/10.1002/adma.201606117
Wang Tianyu(王天宇), Shen Zhaocun(沈兆存), Liu Minghua(刘鸣华). Acta Polymerica Sinica(高分子学报), 2017, (1): 50-62. doi:10.11777/j.issn1000-3304.2017.16319http://dx.doi.org/10.11777/j.issn1000-3304.2017.16319
Kakuta T, Yamagishi T A, Ogoshi T. Acc Chem Res, 2018, 51(7): 1656-1666. doi:10.1021/acs.accounts.8b00157http://dx.doi.org/10.1021/acs.accounts.8b00157
Liu K, Jiang Y, Bao Z, Yan X. CCS Chem, 2019, 1(4): 431-447. doi:10.31635/ccschem.019.20190048http://dx.doi.org/10.31635/ccschem.019.20190048
Hashim P K, Bergueiro J, Meijer E W, Aida T. Prog Polym Sci, 2020, 105: 101250. doi:10.1016/j.progpolymsci.2020.101250http://dx.doi.org/10.1016/j.progpolymsci.2020.101250
Pollard T D, Blanchoin L, Mullins R D. Annu Rev Biophys Biomol Struct, 2000, 29(1): 545-576. doi:10.1146/annurev.biophys.29.1.545http://dx.doi.org/10.1146/annurev.biophys.29.1.545
Shoulders M D, Raines R T. Annu Rev Biochem, 2009, 78: 929-958. doi:10.1146/annurev.biochem.77.032207.120833http://dx.doi.org/10.1146/annurev.biochem.77.032207.120833
Fletcher D A, Mullins R D. Nature, 2010, 463(7280): 485-492. doi:10.1038/nature08908http://dx.doi.org/10.1038/nature08908
Knowles T P J, Vendruscolo M, Dobson C M. Nat Rev Mol Cell Biol, 2014, 15(6): 384-396. doi:10.1038/nrm3810http://dx.doi.org/10.1038/nrm3810
Pollard T D, Borisy G G. Cell, 2003, 112(4): 453-465. doi:10.1016/s0092-8674(03)00120-xhttp://dx.doi.org/10.1016/s0092-8674(03)00120-x
Fowler D M, Koulov A V, Balch W E, Kelly J W. Trends Biochem Sci, 2007, 32(5): 217-224. doi:10.1016/j.tibs.2007.03.003http://dx.doi.org/10.1016/j.tibs.2007.03.003
Gordon A M, Homsher E, Regnier M. Physiol Rev, 2000, 80(2): 853-924. doi:10.1152/physrev.2000.80.2.853http://dx.doi.org/10.1152/physrev.2000.80.2.853
Otterbein L R, Graceffa P, Dominguez R. Science, 2001, 293(5530): 708-711. doi:10.1126/science.1059700http://dx.doi.org/10.1126/science.1059700
Barua B, Winkelmann D A, White H D, Hitchcock-DeGregori S E. Proc Natl Acad Sci USA, 2012, 109(45): 18425-18430. doi:10.1073/pnas.1212754109http://dx.doi.org/10.1073/pnas.1212754109
Von der Ecken J, Mgller M, Lehman W, Manstein D J, Penczek P A, Raunser S. Nature, 2015, 519(7541): 114-117. doi:10.1038/nature14033http://dx.doi.org/10.1038/nature14033
Geeves M A, Holmes K C. Adv Protein Chem, 2005, 71: 161-193. doi:10.1016/s0065-3233(04)71005-0http://dx.doi.org/10.1016/s0065-3233(04)71005-0
Squire J M, Al-khayat H A, Knupp C, Luther P K. Adv Protein Chem, 2005, 71: 17-87. doi:10.1016/s0065-3233(04)71002-5http://dx.doi.org/10.1016/s0065-3233(04)71002-5
Behrmann E, Müller M, Penczek P A, Mannherz H G, Manstein D J, Raunser S. Cell, 2012, 150(2): 327-338. doi:10.1016/j.cell.2012.05.037http://dx.doi.org/10.1016/j.cell.2012.05.037
Squire J M. Global Cardiol Sci Pract, 2016, 2016(2): e201611
Zhang Z, Cheng L, Zhao J, Wang L, Liu K, Yu W, Yan X. Angew Chem Int Ed, 2020, 59(29): 12139-12146. doi:10.1002/anie.202004152http://dx.doi.org/10.1002/anie.202004152
Wan J, Zhang Z, Wang Y, Zhao J, Qi Y, Zhang X, Liu K, Yu C, Yan X. Chem Commun, 2021, 57(60): 7374-7377. doi:10.1039/d1cc02873ahttp://dx.doi.org/10.1039/d1cc02873a
Yu Z, Tantakitti F, Yu T, Palmer L C, Schatz G C, Stupp S I. Science, 2016, 351(6272): 497-502. doi:10.1126/science.aad4091http://dx.doi.org/10.1126/science.aad4091
Chin S M, Synatschke C V, Liu S P, Nap R J, Sather N A, Wang Q F, Alvarez Z, Edelbrock A N, Fyrner T, Palmer L C, Szleifer I, Olvera de la Cruz M, Stupp S I. Nat Commun, 2018, 9: 2395. doi:10.1038/s41467-018-04800-whttp://dx.doi.org/10.1038/s41467-018-04800-w
Stupp S I, Clemons T D, Carrow J K, Sai H, Palmer L C. Isr J Chem, 2020, 60(1-2): 124-131. doi:10.1002/ijch.202000005http://dx.doi.org/10.1002/ijch.202000005
Zhang Z, Cheng L, Zhao J, Zhang H, Zhao X, Liu Y, Bai R, Pan H, Yu W, Yan X. J Am Chem Soc, 2021, 143(2): 902-911. doi:10.1021/jacs.0c10918http://dx.doi.org/10.1021/jacs.0c10918
Shentu Z, Zhang Z, Zhao J, Chen C, Wu Q, Wang L, Yan X. J Mater Chem A, 2021, 9(35): 19619-19624. doi:10.1039/d1ta02288ahttp://dx.doi.org/10.1039/d1ta02288a
Seiffert S, Sprakel J. Chem Soc Rev, 2012, 41(2): 909-930. doi:10.1039/c1cs15191fhttp://dx.doi.org/10.1039/c1cs15191f
Voorhaar L, Hoogenboom R. Chem Soc Rev, 2016, 45(14): 4013-4031. doi:10.1039/c6cs00130khttp://dx.doi.org/10.1039/c6cs00130k
Wang W, Zhang Y, Liu W. Prog Polym Sci, 2017, 71: 1-25. doi:10.1002/app.44978http://dx.doi.org/10.1002/app.44978
Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y, Huang F. Adv Mater, 2012, 24(3): 362-369. doi:10.1002/adma.201103220http://dx.doi.org/10.1002/adma.201103220
Wang H, Heilshorn S C. Adv Mater, 2015, 27(25): 3717-3736. doi:10.1002/adma.201501558http://dx.doi.org/10.1002/adma.201501558
Li C H, Wang C, Keplinger C, Zuo J L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X Z, Bao Z. Nat Chem, 2016, 8(6): 618-624. doi:10.1038/nchem.2492http://dx.doi.org/10.1038/nchem.2492
Zheng W, Yang G, Shao N, Chen L J, Ou B, Jiang S T, Chen G S, Yang H B. J Am Chem Soc, 2017, 139(39): 13811-13820. doi:10.1021/jacs.7b07303http://dx.doi.org/10.1021/jacs.7b07303
Zhang Q, Niu S, Wang L, Lopez J, Chen S, Cai Y, Du R, Liu Y, Lai J C, Liu L, Li C H, Yan X, Liu C, B-HTok J, Jia X, Bao Z. Adv Mater, 2018, 30(33): 1801435. doi:10.1002/adma.201801435http://dx.doi.org/10.1002/adma.201801435
Wang S, Xu Z, Wang T, Xiao T, Hu X Y, Shen Y Z, Wang L. Nat Commun, 2018, 9: 1737. doi:10.1038/s41467-018-03827-3http://dx.doi.org/10.1038/s41467-018-03827-3
Wang L, Cheng L, Li G, Liu K, Zhang Z, Li P, Dong S, Yu W, Huang F, Yan X. J Am Chem Soc, 2020, 142(4): 2051-2058. doi:10.1021/jacs.9b12164http://dx.doi.org/10.1021/jacs.9b12164
Wu J, Cai L H, Weitz D A. Adv Mater, 2017, 29(38): 1702616. doi:10.1002/adma.201702616http://dx.doi.org/10.1002/adma.201702616
Filippidi E, Cristiani T R, Eisenbach C D, Waite J H, Israelachvili J N, Ahn B K, Valentine M T. Science, 2017, 358(6362): 502-505. doi:10.1126/science.aao0350http://dx.doi.org/10.1126/science.aao0350
Song Y, Liu Y, Qi T, Li G L. Angew Chem Int Ed, 2018, 57(42): 13838-13842. doi:10.1002/anie.201807622http://dx.doi.org/10.1002/anie.201807622
Kim S M, Jeon H, Shin S H, Park S A, Jegal J, Hwang S Y, Oh D X, Park J. Adv Mater, 2018, 30(1): 1705145. doi:10.1002/adma.201705145http://dx.doi.org/10.1002/adma.201705145
Zhang Z, Zhao J, Guo Z, Zhang H, Pan H, Wu Q, You W, Yu W, Yan X. Nat Commun, 2022, 13: 1393. doi:10.1038/s41467-022-29141-7http://dx.doi.org/10.1038/s41467-022-29141-7
Zhang L, Liu Z, Wu X, Guan Q, Chen S, Sun L, Guo Y, Wang S, Song J, Jeffries E M, He C, Qing F L, Bao X, You Z. Adv Mater, 2019, 31(23): 1901402. doi:10.1002/adma.201901402http://dx.doi.org/10.1002/adma.201901402
Li G, Wang L, Wu L, Guo Z, Zhao J, Liu Y, Bai R, Yan X. J Am Chem Soc, 2020, 142(33): 14343-14349. doi:10.1021/jacs.0c06416http://dx.doi.org/10.1021/jacs.0c06416
Huang Z, Chen X, O'Neill S J K, Wu G, Whitaker D J, Li J, McCune J A, Scherman O A. Nat Mater, 2021, 21(1): 103-109. doi:10.1038/s41563-021-01124-xhttp://dx.doi.org/10.1038/s41563-021-01124-x
Liu K, Cheng L, Zhang N, Pan H, Fan X, Li G, Zhang Z, Zhao D, Zhao J, Yang X, Wang Y, Bai R, Liu Y, Liu Z, Wang S, Gong X, Bao Z, Gu G, Yu W, Yan X. J Am Chem Soc, 2021, 143(2): 1162-1170. doi:10.1021/jacs.0c12119http://dx.doi.org/10.1021/jacs.0c12119
Zhao J, Zhang Z, Cheng L, Bai R, Zhao D, Wang Y, Yu W, Yan X. J Am Chem Soc, 2022, 144(2): 872-882. doi:10.1021/jacs.1c10427http://dx.doi.org/10.1021/jacs.1c10427
Bai L, Zhao Y. Macromol Rapid Commun, 2016, 37(11): 920-923. doi:10.1002/marc.201600153http://dx.doi.org/10.1002/marc.201600153
Hou X, Ke C, Zhou Y, Xie Z, Alngadh A, Keane D T, Nassar M S, Botros Y Y, Mirkin C A, Stoddart J F. Chem-Eur J, 2016, 22(35): 12301-12306. doi:10.1002/chem.201602954http://dx.doi.org/10.1002/chem.201602954
Chen Y, Kushner A M, Williams G A, Guan Z. Nat Chem, 2012, 4(6): 467-472. doi:10.1038/nchem.1314http://dx.doi.org/10.1038/nchem.1314
Wu M, Yuan L, Jiang F, Zhang Y, He Y, You Y Z, Tang C, Wang Z. Chem Mater, 2020, 32(19): 8325-8332. doi:10.1021/acs.chemmater.0c02169http://dx.doi.org/10.1021/acs.chemmater.0c02169
Zhang L, Liang J, Jiang C, Liu Z, Sun L, Chen S, Xuan H, Lei D, Guan Q, Ye X, You Z. Natl Sci Rev, 2021, 8(5): nwaa154. doi:10.1093/nsr/nwaa154http://dx.doi.org/10.1093/nsr/nwaa154
Fernández-Castaño Romera M, Lou X, Schill J, Ter Huurne G, Fransen P P K, Voets I K, Storm C, Sijbesma R P. J Am Chem Soc, 2018, 140(50): 17547-17555. doi:10.1021/jacs.8b09289http://dx.doi.org/10.1021/jacs.8b09289
Romera M F C, Göstl R, Shaikh H, Ter Huurne G, Schill J, Voets I K, Storm C, Sijbesma R P. J Am Chem Soc, 2019, 141(5): 1989-1997 doi:10.1021/jacs.8b10659http://dx.doi.org/10.1021/jacs.8b10659
Mao Y, Su T, Wu Q, Liao C, Wang Q. Chem Commun, 2014, 50(92): 14429-14432. doi:10.1039/c4cc06472khttp://dx.doi.org/10.1039/c4cc06472k
Wei Q, Xu M, Liao C, Wu Q, Liu M, Zhang Y, Wang Q. Chem Sci, 2016, 7(4): 2748-2752. doi:10.1039/c5sc02234ghttp://dx.doi.org/10.1039/c5sc02234g
Mondal S, Lessard J J, Meena C L, Sanjayan G J, Sumerlin B S. J Am Chem Soc, 2022, 144(2): 845-853. doi:10.1021/jacs.1c10606http://dx.doi.org/10.1021/jacs.1c10606
Yanagisawa Y, Nan Y, Okuro K, Aida T. Science, 2018, 359(6371): 72-76. doi:10.1126/science.aam7588http://dx.doi.org/10.1126/science.aam7588
Song L, Zhu T, Yuan L, Zhou J, Zhang Y, Wang Z, Tang C. Nat Commun, 2019, 10: 1315. doi:10.1038/s41467-019-09218-6http://dx.doi.org/10.1038/s41467-019-09218-6
Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 3-8. doi:10.11777/j.issn1000-3004.2017.16235http://dx.doi.org/10.11777/j.issn1000-3004.2017.16235
Gao Feixue(高飞雪), Chen Yongjun(陈拥军), Liu Dongsheng(刘冬生), Liu Minghua(刘鸣华), Tian Zhongqun(田中群), Zhang Xi(张希). Acta Phys-Chim Sin(物理化学学报), 2020, 36(11): 2006060. doi:10.3866/PKU.WHXB202006060http://dx.doi.org/10.3866/PKU.WHXB202006060
Liu Y, Wang H, Li S, Chen C, Xu L, Huang P, Liu F, Su Y, Qi M, Yu C, Zhou Y. Nat Commun, 2020, 11: 1724. doi:10.1038/s41467-020-15427-1http://dx.doi.org/10.1038/s41467-020-15427-1
0
浏览量
1071
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构