浏览全部资源
扫码关注微信
1.广西民族大学,材料与环境学院,南宁 530006
2.广西民族大学,林产化学与工程国家民委重点实验室 广西林产化学与工程重点实验室/ 协同创新中心,南宁 530006
3.广西民族大学,化学化工学院,南宁 530006
E-mail: phdsjyan@gxun.edu.cn
纸质出版日期:2022-08-20,
网络出版日期:2022-06-24,
收稿日期:2022-02-24,
录用日期:2022-04-13
移动端阅览
郑宇,严石静,张炎等.二苯并冠醚和二苯氧基乙醚结构单元对可降解聚六氢三嗪热固性树脂性能的影响[J].高分子学报,2022,53(08):973-984.
Zheng Yu,Yan Shi-jing,Zhang Yan,et al.Effects of Dibenzocrown Ether and Diphenoxyethylene Diether Structural Units on the Properties of Degradable Polyhexahydrotriazine Thermosetting Resins[J].ACTA POLYMERICA SINICA,2022,53(08):973-984.
郑宇,严石静,张炎等.二苯并冠醚和二苯氧基乙醚结构单元对可降解聚六氢三嗪热固性树脂性能的影响[J].高分子学报,2022,53(08):973-984. DOI: 10.11777/j.issn1000-3304.2022.22050.
Zheng Yu,Yan Shi-jing,Zhang Yan,et al.Effects of Dibenzocrown Ether and Diphenoxyethylene Diether Structural Units on the Properties of Degradable Polyhexahydrotriazine Thermosetting Resins[J].ACTA POLYMERICA SINICA,2022,53(08):973-984. DOI: 10.11777/j.issn1000-3304.2022.22050.
基于同时含有柔性乙醚和刚性苯环结构的2种芳香二胺单体,4
4'-二氨基二苯并冠
醚(DACr)和2
2-双(
P
-氨基苯氧基)乙醚(BAPE),分别与多聚甲醛经缩聚和热固化制备PHTs膜材料,通过结构表征、热性能分析、拉伸测试、接触角和耐化学试剂性能测试,以及降解性能测试等表征测试手段,探索2种结构单元对聚合物交联结构形成和性能的影响规律. 研究结果表明,结构单元刚性与六氢三嗪(HT)环交联结构完善程度相关联且共同决定了PHT膜材料的性能,含柔性的非环状BAPE结构单元的PHT能形成较完整的HT交联结构,体现较高的热稳定性(5%热失重温度为296.8 ℃)、亲水性和相对较低的酸解程度,含较大刚性的DACr结构单元的PHT膜则具有更高的力学强度(拉伸强度53.6 MPa)、疏水性、耐有机试剂和高酸解程度,其在冰乙酸溶液中降解可获得超过83%收率的原料DACr. 2种PHT材料受HT结构完善性和结构单元刚性2种结构因素共同影响,体现出相差不大的玻璃化转变温度(
T
g
分别为117.8和117.9 ℃). 本研究工作为PHT材料结构设计及性能调控提供理论依据经验和借鉴,同时制备所得的PHT材料满足降解要求,具有潜在的应用价值.
Polyhexahydrotriazine (PHTs) films were prepared by polycondensation between the two aromatic diamine monomers and paraformaldehyde and then the thermal curing process. Those two aromatic diamine monomers were 4
4'-diaminodibenzocrown ether (DACr) and 2
2-bis(P-aminophenoxy) ether (BAPE)
which contained both flexible ether and rigid benzene ring structures. Through structural characterization and a variety of performance tests
including thermal performance analysis
tensile testing
contact angle
chemical resistance performance testing
and degradation performance testing
the effect of structural units of DACr and BAPE on the cro
sslinking structures formation and properties of polymer were investigated. The results show that the rigidity of the structural unit was related to the completeness of the cross-linked structure of the hexahydrotriazine (HT) ring and jointly determined the performance of the PHT film material. The PHT containing the flexible acyclic BAPE structural unit tended to form perfect HT rings
and behaved the high thermal stability (5% thermogravimetric loss temperature is 296.8 ℃)
hydrophilicity and relatively low degree of acid hydrolysis. The PHT film containing the more rigid DACr structural unit had the higher mechanical strength (tensile strength 53.6 MPa)
hydrophobicity
resistance to organic reagents and the degree of acid hydrolysis
it was complete degaration in glacial acetic acid solution and recyling the raw monomer of DACr with high yield of more than 83%. Due to the influence of both the structural integrity of HT and the rigidity of the structural unit
the two PHT materials showed the similar glass transition temperatures (
T
g
s were 117.8 and 117.9 ℃
respectively). This study provides theoretical basis and experience for the structural design and performance regulation of PHT materials. Meantime
the obtained PHT materials meet the degradation requirements and have the potential application value.
聚六氢三嗪柔性和刚性性能降解
PolyhexahydrotriazineFlexible and rigidPropertiesDegradation
He pingsheng(何平笙), Jin Bangkun(金邦坤), Li Chune(李春娥). Curing of Thermosetting Resins and Resin Matrix Composites(热固性树脂及树脂基复合材料的固化). Hefei(合肥): University of Science and Technology of China Press(中国科学技术大学出版社), 2011. 1-20
Chen L, Zhu S, Toendepi I, Jiang Q, Wei Y, Qiu Y P, Liu W S. Polymers, 2020, 12(10): 2375. doi:10.3390/polym12102375http://dx.doi.org/10.3390/polym12102375
Turkenburg D H, Fischer H R. Polymer, 2015, 79: 187-194. doi:10.1016/j.polymer.2015.10.031http://dx.doi.org/10.1016/j.polymer.2015.10.031
Kuang X, Liu G, Dong X, Liu X G, Xu J J, Wang D J. J Polym Sci, Part A: Polym Chem, 2015, 53(18): 2094-2103. doi:10.1002/pola.27655http://dx.doi.org/10.1002/pola.27655
Luzuriaga A R, Martin R, Markaide N, Rekondo A, Cabañero G, Rodrígueza J, Odriozola I. Mater Horiz, 2016, 3(3):241-247
Yu K, Taynton P, Zhang W, Dunn M L, Qi H J. J Polym Sci, Part A: Polym Chem, 2014(4): 10108-10117
Yu K, Taynton P, Zhang W, Dunn M L, Qi H J. J Polym Sci, Part A: Polym Chem, 2014(4): 48682-48690
Golder M R, Nguyen H V T, Oldenhuis N J, Grundler J, Park E J, Johnson J A. Macromolecules, 2018, 51(23): 9861-9870. doi:10.1021/acs.macromol.8b01966http://dx.doi.org/10.1021/acs.macromol.8b01966
Hashimoto T, Meiji H, Urushisaki M, Sakaguchi T, Kawabe K, Tsuchida C, Kondo K. J Polym Sci, Part A: Polym Chem, 2012, 50(17): 3674-3681. doi:10.1002/pola.26160http://dx.doi.org/10.1002/pola.26160
Yamaguchi A, Hashimoto T, Kakichi Y, Urushisaki M, Sakaguchi T, Kawabe K, Kondo K, Iyo H. J Polym Sci, Part A: Polym Chem, 2015, 53(8): 1052-1059. doi:10.1002/pola.27575http://dx.doi.org/10.1002/pola.27575
You S, Ma S, Dai J Y, Jia Z, Liu X Q, Zhu J. ACS Sustain Chem Eng, 2017, 5(6): 4683-4689. doi:10.1021/acssuschemeng.7b00030http://dx.doi.org/10.1021/acssuschemeng.7b00030
Xu Z, Liang Y, Ma X, Chen S, Yu C L, Wang Y M, Zhang D H, Miao M H. Nat Sustain, 2020, 3(1): 29-34. doi:10.1038/s41893-019-0444-6http://dx.doi.org/10.1038/s41893-019-0444-6
Wang L, Yan S J, Zhang L, Mei Y L, Li W H, Pang H. Macromol Res, 2021, 29(7): 462-469. doi:10.1007/s13233-021-9060-1http://dx.doi.org/10.1007/s13233-021-9060-1
Zeng Y, Li J, Liu S X, Yang B. Polymers, 2021, 13(19): 3386. doi:10.3390/polym13193386http://dx.doi.org/10.3390/polym13193386
Wu X, Yang X, Yu R, Zhang X J, Zhang Y, Huang W. J Mater Chem A, 2018, 6(22): 10184-10188. doi:10.1039/c8ta02102chttp://dx.doi.org/10.1039/c8ta02102c
Ling J, Rong M Z, Zhang M Q. Polymer, 2012, 53(13): 2691-2698. doi:10.1016/j.polymer.2012.04.016http://dx.doi.org/10.1016/j.polymer.2012.04.016
Ling J, Rong M Z, Zhang M Q. J Mater Chem, 2011, 21(45): 18373-18380. doi:10.1039/c1jm13467ahttp://dx.doi.org/10.1039/c1jm13467a
Liu Jingkai(刘敬楷), Dai Jinyue(代金月), Zhao Weiwei(赵伟伟), Yu Wenjie(余文杰), Liu Xiaoqing(刘小青). Acta Polymerica Sinica(高分子学报), 2022, 53(2): 107-118. doi:10.11777/j.issn1000-3304.2021.21261http://dx.doi.org/10.11777/j.issn1000-3304.2021.21261
García J M, Jones G O, Virwani K, Virwani K, McCloskey B D, Boday D J, Huurne G M, Horn H W, Coady D J, Bintaleb A M, Alabdulrahman A M S, Alsewailem F, Almegren H A A, Hedrick J L. Science, 2014, 344(6185): 732-735. doi:10.1126/science.1251484http://dx.doi.org/10.1126/science.1251484
Fevre M, Wojtecki R J, Hedrick J, García J M, Hedrick J L. Adv Funct Mater, 2016, 26(30): 5560-5568. doi:10.1002/adfm.201600661http://dx.doi.org/10.1002/adfm.201600661
Yuan Y C, Sun Y S, Yan S J, Zhao J Q, Liu S M, Zhang M Q, Zheng X X, Jia L. Nat Commun, 2017, 8(1): 1-11. doi:10.1038/ncomms14657http://dx.doi.org/10.1038/ncomms14657
Ma Le(麻乐), Yuan Yanchao(袁彦超), Liu Shibo(刘诗博), Wang Zhenhan(王振汉), Jing Changyou(井长友), Liu Shumei(刘述梅), Zhao Jianqin(赵建青). Acta Polymerica Sinica(高分子学报), 2021, 52(9): 1156-1164. doi:10.11777/j.issn1000-3304.2021.21035http://dx.doi.org/10.11777/j.issn1000-3304.2021.21035
Yuan Y C, Sun Y X, Yan S J, Zhao J Q, Liu S, Zhang M Q, Zheng X X, Jia L. Nat Commun, 2017, 8: 14657. doi:10.1038/ncomms14657http://dx.doi.org/10.1038/ncomms14657
Eastmond G C, Paprotny J. Polymer, 2002, 43(12): 3455-3468. doi:10.1016/s0032-3861(02)00110-6http://dx.doi.org/10.1016/s0032-3861(02)00110-6
Guo Kai(郭 凯), Zhang Shuyuan(张淑媛), He Keke(何可可), Zheng Shijun(郑世军), Zhang Teng(张腾), Yan Tao(阎涛), Li Zifa(李自法). Chinese Journal of Applied Chemistry(应用化学), 2002, 19(4): 329-333. doi:10.3969/j.issn.1000-0518.2002.04.007http://dx.doi.org/10.3969/j.issn.1000-0518.2002.04.007
Meng Jie(孟杰), Tian Baozhi(田宝芝), Hang Shu(黄枢). Chinese Journal of Organic Chemistry(有机化学), 1996, (3):253-257. doi:10.3321/j.issn:0253-2786.1996.03.011http://dx.doi.org/10.3321/j.issn:0253-2786.1996.03.011
Fevre M, Wojtecki R J, Hedrick J, García J M, Hedrick J L. Adv Funct Mater, 2016, 26(30): 5560-5568. doi:10.1002/adfm.201600661http://dx.doi.org/10.1002/adfm.201600661
Li Y, Zhao J Q, Yuan Y C, Shi C Q, Liu S M, Yan S H, Zhao Y, Zhang M Q. Macromolecules, 2015, 48(7): 2173-2183. doi:10.1021/acs.macromol.5b00307http://dx.doi.org/10.1021/acs.macromol.5b00307
Ma L, Zhang R, Niu H, Lu Z, Huang Y D. Diamond Relat Mater, 2021, 112: 108250. doi:10.1016/j.diamond.2021.108250http://dx.doi.org/10.1016/j.diamond.2021.108250
Fang Li Jun(方丽君), Wang Jing Mei(王景梅), Lin Qiao Jing(林巧靖), Chen Jian Hua(陈建华), Yang Qian(杨谦). CIESC Journal(化工学报), 2021, 72(7): 3716-3727. doi:10.11949/0438-1157.20210044http://dx.doi.org/10.11949/0438-1157.20210044
Zhu Xin(朱鑫), Zhang Shu Yuan(张淑媛), Li Hui(李辉), Li Zi Fa(李自法). Chinese Journal of Applied Chemistry(应用化学), 2010, 27(1): 38-42. doi:10.3969/j.issn.1000-0518.2010.01.007http://dx.doi.org/10.3969/j.issn.1000-0518.2010.01.007
Kaminker R, Callaway E B, Dolinski N D, Barbon S M, Shibata M, Wang H B, Hu J, Hawker C J. Chem Mater, 2018, 30(22): 8352-8358. doi:10.1021/acs.chemmater.8b03926http://dx.doi.org/10.1021/acs.chemmater.8b03926
Ji S, Duan H, Chen Y, Chem Y S, Guo D C, Ma H. Polymer, 2020, 207: 122917. doi:10.1016/j.polymer.2020.122917http://dx.doi.org/10.1016/j.polymer.2020.122917
Wang Lei(王雷), Zhang Lei(张磊), Yan Shijing(严石静), Mai Yuliang(麦裕良), Pang Hao(庞浩), Li Weihao(李伟浩). China Adhesive (中国胶粘剂), 2021, 30(12): 803-808, 820
0
浏览量
89
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构