浏览全部资源
扫码关注微信
大连理工大学高分子材料系 精细化工国家重点实验室 大连 116024
E-mail: wqqiao@dlut.edu.cn
纸质出版日期:2022-11-20,
网络出版日期:2022-08-26,
收稿日期:2022-03-18,
录用日期:2022-05-05
移动端阅览
孙苗莘,闫显文,王鑫等.侧基可脱除共轭聚合物的合成及其在光电探测器中的应用[J].高分子学报,2022,53(11):1341-1348.
Sun Miao-shen,Yan Xian-wen,Wang Xin,et al.Synthesis of Side-group Removable Conjugated Polymers and Their Applications in Photodetectors[J].ACTA POLYMERICA SINICA,2022,53(11):1341-1348.
孙苗莘,闫显文,王鑫等.侧基可脱除共轭聚合物的合成及其在光电探测器中的应用[J].高分子学报,2022,53(11):1341-1348. DOI: 10.11777/j.issn1000-3304.2022.22086.
Sun Miao-shen,Yan Xian-wen,Wang Xin,et al.Synthesis of Side-group Removable Conjugated Polymers and Their Applications in Photodetectors[J].ACTA POLYMERICA SINICA,2022,53(11):1341-1348. DOI: 10.11777/j.issn1000-3304.2022.22086.
通过在吡咯并吡咯二酮(DPP)中引入热可脱去的叔丁氧羰基(Boc)基团,合成了一种新型的给-受体共轭聚合物
P1
. 聚合物
P1
的溶解性研究表明,其在常见的有机溶剂(如四氢呋喃、甲苯、氯仿等)中均具有良好的溶解性,可进行溶液加工. 热失重及红外光谱研究表明,
P1
可在适当的温度下退火实现Boc基团的脱除,形成不可溶聚合物
P2
. 聚合物
P1
薄膜的最大吸收波长为829 nm,最高占据分子轨道(HOMO)能级与最低未占分子轨道(LUMO)能级分别为-5.25和-3.62 eV,将其作为活性层制备的光电探测器最大归一化探测率为8.20×10
11
Jones. 聚合物
P2
薄膜的最大吸收波长为771 nm,HOMO能级与LUMO能级分别为-5.30和-3.54 eV,将其作为空穴传输层制备的光电探测器暗电流密度为3.84×10
-9
A/cm
2
,最大归一化探测率为3.96×10
12
Jones. 研究结果为共轭聚合物分子的结构设计与光电探测器性能的改善提供了新的思路.
Donor-acceptor conjugated polymer
P1
was synthesized by introducing a thermally removable tert-butoxycarbonyl (Boc) group into diketopyrrolopyrrole (DPP). The solubility study of polymer
P1
shows that it has good solubility in common organic solvents (such as tetrahydrofuran
toluene
chloroform
etc.
)
and can be processed in solution. Thermogravimetric analysis and infrared spectroscopy show that the Boc group of
P1
can be removed at an appropriate temperature and the insoluble polymer
P2
can be formed. The maximum absorption wavelength of the polymer
P1
film is 829 nm
the highest occupied molecular orbital (HOMO) level and the lowest unoccupied molecular orbital (LUMO) level are -5.25 and -3.62 eV
respectively. The photodetector with
P1
/PC
61
BM as active layer exhibits a maximum specific detectivity of 8.20×10
11
Jones and dark current density of 6.49×10
-8
A/cm
2
under -0.1 V bias. The maximum absorption wavelength of the polymer
P2
film is 771 nm
the HOMO and LUMO levels are -5.30 and -3.54 eV respectively. The dark current density of the photodetector with
P2
as hole transport layer and P3HT/PC
61
BM as active layer is 3.84×10
-9
A/cm
2
and the maximum specific detectivity is 3.96×10
12
Jones under -0.1 V bias. Compared with the device without hole transport layer and the device with PEDOT:PSS as hole transport layer
the device with
P2
as hole transport layer shows lower dark current density and higher maximum specific detectivity. The results imply that polymer
P2
with insoluble property is a potential candidate for hole transport material. This work provides new ideas for the selection of hole transport layer materials
the structural design of conjugated polymer molecules and the improvement of photodetector performance.
叔丁氧羰基(Boc)共轭聚合物溶解性热退火光电探测器
Tert-butoxycarbonyl (Boc)Conjugated polymerSolubilityAnnealingPhotodetector
Zhang Kai(张凯), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2017, (9): 1400-1414. doi:10.11777/j.issn1000-3304.2017.17075http://dx.doi.org/10.11777/j.issn1000-3304.2017.17075
Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62(23): 1562-1564. doi:10.1016/j.scib.2017.11.003http://dx.doi.org/10.1016/j.scib.2017.11.003
Cheng P, Zhan X. Chem Soc Rev, 2016, 45(9): 2544-2582. doi:10.1039/c5cs00593khttp://dx.doi.org/10.1039/c5cs00593k
Wang J, Ueda M, Higashihara T. ACS Macro Lett, 2013, 2(6): 506-510. doi:10.1021/mz400143yhttp://dx.doi.org/10.1021/mz400143y
Miyakoshi R, Yokoyama A, Yokozawa T. J Am Chem Soc, 2005, 127(49): 17542-17547. doi:10.1021/ja0556880http://dx.doi.org/10.1021/ja0556880
Qi J, Qiao W Q, Wang Z Y. Chem Rec, 2016, 16: 1531-1548. doi:10.1002/tcr.201600013http://dx.doi.org/10.1002/tcr.201600013
Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2018, (2): 223-230. doi:10.11777/j.issn1000-3304.2018.17297http://dx.doi.org/10.11777/j.issn1000-3304.2018.17297
Yang Peipei(杨佩佩), Dong Lichao(董立超), Li Yuanyuan(李园园), Zhang Longlong(张龙龙), Shi Jianbing(石建兵), Zhi Junge(支俊格), Tong Bin(佟斌), Dong Yuping(董宇平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1285-1293. doi:10.11777/j.issn1000-3304.2017.17001http://dx.doi.org/10.11777/j.issn1000-3304.2017.17001
Yao Huifeng(姚惠峰), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2016, (11): 1468-1481. doi:10.11777/j.issn1000-3304.2016.16216http://dx.doi.org/10.11777/j.issn1000-3304.2016.16216
Deng Yanghua(邓阳华), Xiao Haibin(肖海斌), Qiao He(乔贺), Tan Songting(谭松庭). Acta Polymerica Sinica(高分子学报), 2017, (6): 922-929. doi:10.11777/j.issn1000-3304.2017.16314http://dx.doi.org/10.11777/j.issn1000-3304.2017.16314
Lu Junming(卢俊明), Cai Wanqing(蔡万清), Zhang Guichuan(张桂传), Liu Shengjian(刘升建), Ying Lei(应磊), Huang Fei(黄飞). Acta Chimica Sinica(化学学报), 2015, 73: 1153-1160. doi:10.6023/a15080546http://dx.doi.org/10.6023/a15080546
Azzellino G, Grimoldi A, Binda M, Caironi M, Natali D, Sampietro M. Adv Mater, 2013, 25: 6829-6833. doi:10.1002/adma.201303473http://dx.doi.org/10.1002/adma.201303473
Yang F, Wang X, Feng G, Ma J, Li C, Li J, Ma W, Li W. Sci China Chem, 2018, 61(7): 824-829. doi:10.1007/s11426-018-9241-0http://dx.doi.org/10.1007/s11426-018-9241-0
Yu C, Xu Y, Li C, Feng G, Yang F, Li J, Li W. Chin J Chem, 2018, 36(6): 515-518. doi:10.1002/cjoc.201800009http://dx.doi.org/10.1002/cjoc.201800009
Wang Jian(王健), Zhao Zijin(赵子进), Yang Kaixuan(杨凯旋), Chen Liang(陈亮), Liu Ming(刘明) , Zhang Fujun(张福俊). Acta Polymerica Sinica(高分子学报), 2022, 53(4): 331-353. doi:10.11777/j.issn1000-3304.2021.21328http://dx.doi.org/10.11777/j.issn1000-3304.2021.21328
Li Xin(李昕), Wang Xichang(王喜常), Zheng Yiping(郑一平), Zhang Yan(张焱), Li Congju(李从举), Chen Guangming(陈光明). Acta Polymerica Sinica(高分子学报), 2016, (1): 91-97. doi:10.11777/j.issn1000-3304.2016.15133http://dx.doi.org/10.11777/j.issn1000-3304.2016.15133
Bin H, Zhang Z G, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138(13): 4657-4664. doi:10.1021/jacs.6b01744http://dx.doi.org/10.1021/jacs.6b01744
Tang A, Zhan C, Yao J, Zhou E. Adv Mater, 2017, 29(2): 1600013. doi:10.1002/adma.201600013http://dx.doi.org/10.1002/adma.201600013
Xu J Q, Liu W, Liu S Y, Ling J, Mai J, Lu X, Li C Z, Jen A K Y, Chen H. Sci China Chem, 2017, 60(4): 561-569. doi:10.1007/s11426-016-9003-9http://dx.doi.org/10.1007/s11426-016-9003-9
Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y. J Am Chem Soc, 2013, 135(23): 8484-8487. doi:10.1021/ja403318yhttp://dx.doi.org/10.1021/ja403318y
Zerdan R B, Shewmon N T, Zhu Y, Mudrick J P, Chesney K J, Xue J, Castellano R K. Adv Funct Mater, 2014, 24(38): 5993-6004. doi:10.1002/adfm.201401030http://dx.doi.org/10.1002/adfm.201401030
Cho M J, Shin J, Yoon S H, Lee T W, Kaur M, Choi D H. Chem Commun, 2013, 49(64): 7132-7134. doi:10.1039/c3cc43742fhttp://dx.doi.org/10.1039/c3cc43742f
Henson Z B, Mullen K, Bazan G C. Nat Chem, 2012, 4(9): 699-704
Zhang Zhongqiang(章中强), Liu Zhixi(刘志玺), Yan Kangrong(严康荣), Li Huanbin(李焕斌), Liu Wenqing(刘文清), Lu Xinhui(路新慧), Li Hanying(李寒莹), Chen Hongzheng(陈红征), Li Changzhi(李昌治). Acta Polymerica Sinica(高分子学报), 2018, (2): 295-303. doi:10.11777/j.issn1000-3304.2018.17253http://dx.doi.org/10.11777/j.issn1000-3304.2018.17253
Fischer G M, Krondahl M I, Schnetmann I G, Daltrozzo E, Zumbusch A. Chem Eur J, 2009, 15: 4857-4864. doi:10.1002/chem.200801996http://dx.doi.org/10.1002/chem.200801996
Fischer G M, Jüngst C, Gauss D. Chem Commun, 2010, 46: 5289-5291. doi:10.1039/c0cc00359jhttp://dx.doi.org/10.1039/c0cc00359j
Ji Q, Han J F, Zhou X K, Yang D Z, Zhang J D, Qiao W Q, Ma D G, Wang Z Y. Macromolecules, 2015, 48(12):3941-3948
Riku K, Reo O, Keita Y, Takuro E, Kouta S, Atsushi I. J Mater Chem C, 2021, 9: 6357-6363. doi:10.1039/d1tb00377ahttp://dx.doi.org/10.1039/d1tb00377a
Liu C, Wang K, Gong X, Heeger A. Chem Soc Rev, 2016, 45: 4825-4646. doi:10.1039/c5cs00650chttp://dx.doi.org/10.1039/c5cs00650c
0
浏览量
116
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构