纸质出版日期:2022-09-20,
网络出版日期:2022-07-15,
收稿日期:2022-03-19,
录用日期:2022-04-20
移动端阅览
引用本文
阅读全文PDF
与广泛使用的聚烯烃材料相比,脂肪族聚酯由于其独特的生物相容性和可降解性,在电子、包装和生物医学等领域都有广泛的应用. 开环聚合(ROP)是目前合成脂肪族聚酯的主要方法,本文针对催化开环聚合用于合成脂肪族聚酯,总结了该领域所涉及的2类主要催化体系,即金属基催化剂和无金属有机催化剂,同时对新兴的酶催化体系做了初步介绍. 列举了相关重要催化体系的化学结构,旨在揭示各类体系的催化反应特点,重点关注和评述了催化剂结构对催化效率、可控性、分子量和立体选择性的影响. 金属基催化剂主要包括中心金属与N-杂环卡宾、硫脲等配位生成的配合物,其在结构上具有较大的可调性,可根据催化的需要选择不同的结构;而无金属有机催化剂如有机碱催化剂(如磷腈碱和N-杂环卡宾等),有机酸催化剂(如磷酸和方酸等),往往具有高效催化效率、摩尔质量控制和立体选择性的优点;除此以外脂肪酶催化剂具有反应范围广、反应温和以及无金属污染残留的特点.
Compared with widely used polyolefin materials, aliphatic polyesters can show the same properties, and their unique biocompatibility and degradability make them widely used in electronics, absorbable surgical suture, food packaging, biomedicine and so on. They have become an environmentally friendly substitute for traditional polyolefin plastics, especially aliphatic polyester materials derived from biomass. Ring opening polymerization (ROP) is the main method for synthesizing aliphatic polyester at present. Aiming at the application of catalytic ring opening polymerization in the synthesis of aliphatic polyester, this paper summarizes two main catalytic systems involved in this field, namely metal based catalyst and metal free organic catalyst, and gives a preliminary introduction to the emerging enzyme catalytic system. This paper lists the chemical structures of relevant important catalytic systems, aims to reveal the catalytic reaction characteristics of various systems, and focuses on and comments on the effects of catalyst structure on catalytic efficiency, controllability, molecular weight and stereoselectivity. Specifically, metal based catalysts mainly include complexes formed by the coordination of central metal with N-heterocyclic carbene and thiourea, which have great adjustability in structure, and different structures can be selected according to the needs of catalysis; Metal free organic catalysts such as organic base catalysts (phosphonitrile base, N-heterocyclic carbene, etc.) and organic acid catalysts (phosphoric acid, squaric acid, etc.) often have the advantages of high catalytic efficiency, molar mass control and stereoselectivity. In addition, lipase catalyst has the characteristics of wide reaction range, mild reaction and no metal pollution residue.
总结了金属基和有机两大类催化剂在催化脂肪族聚酯合成中的应用进展,概括了不同种类催化剂的不同性质,及在影响可控性、分子量和立体选择性等方面的作用.
在化石原料日益枯竭的大背景下,可持续发展观念逐渐深入人心,因此生产生活中对生物可降解聚合物产品的需求逐渐增长. 如今使用来自可再生资源的单体是合成可持续聚合物的最优解. 可再生生物质正在全球范围内逐步替代传统聚烯烃塑料,因而在大规模工业生产中,研究人员一直致力于开发能够取代传统聚烯烃塑料的可再生、可生物降解聚合物. 生物衍生环酯单体开环聚合是实现这一目标的一个很有前途的新方法. 合成聚合物应用最广泛的技术是开环聚合[
金属基催化剂在开环聚合中起着举足轻重的作用,它们具有很高的活性,并且能够精确地控制所得聚酯的分散性、微观结构或规整性等方面[
脂肪族聚酯材料[
Fig. 1 List of monomers and their abbreviations.
金属介导的开环聚合是迄今为止研究最多脂肪族聚酯合成路线. 近年来,锌[
No. | Catalyst | Group | Ref. |
---|---|---|---|
1 |
| ‒ |
[ |
2 |
| ‒ |
[ |
3 |
| ‒ |
[ |
4 |
|
M = Al; R = iPr M = Y; R = (CH2)2NMe2 |
[ |
5 |
|
R = Me or Et X = CH2C(Me)2CH2; R1 = R2 = tBu X = 2,2'-biphenyl; R1 = R2 = H X = CH2C(Me)2CH2; R1 = H; R2 = tBuMe2Si |
[ |
6 |
|
R1 = Me; R2 = H, Me, tBu, Cl R1 = CH2Ph, R2 = H, Me, tBu, Cl |
[ |
7 |
|
R1 = R2 = H R1 = Cl; R2 = H R1 = H; R2 = Me |
[ |
8 |
|
X = CF3SO3 R = CH3 |
[ |
9 |
|
R1 = Ph, R2 = Et R1 = Me, R2 = tBu |
[ |
10 |
|
R = CH2SiMe3 R1 = R2 = H R1 = Me, R2 = H R1 = Me, R2 = NO2 |
[ |
11 |
|
R1 = R2 = tBu, Ln = Sc, R = tBu R1 = R2 = tBu, Ln = Y, R = Et R1 = R2 = tBu, Ln = Y, R = tBu R1 = R2 = tBu, Ln = Lu, R = tBu R1 = Ad, R2 = Me, Ln = Y, R = Et |
[ |
12 |
|
R = Me R = CH2CH2OMe R = CH(CH3)CH2OMe |
[ |
13 |
| X= OH; OiPr, N(SiMe3)2; N(SiPhMe2)2 |
[ |
14 |
|
D = S; R = Ph D = O; R = Me |
[ |
15 |
| X = OAc |
[ |
16 |
|
M = Zn, R = Br M = Cu, R = H M = Cu, R = Br |
[ |
17 |
|
R1 = Et, R2 = tBu, R3= nPr, tBu, CH2SiMe3 R1 = R2 = iPr, R3 = nPr, tBu, CH2SiMe3 |
[ |
18 |
| R = Me, iPr |
[ |
丙交酯有3种立体异构体:内消旋丙交酯(meso-LA)、D-丙交酯和L-丙交酯. L-丙交酯与D-丙交酯的50:50混合物被称为外消旋丙交酯
(Rac-LA). 丙交酯聚合的方法分为2种,一种通过L-LA进行直接聚合[
在内酯与交酯的开环聚合催化剂的研究进程中,最具代表性的单金属中心催化剂为β-二亚胺锌配合物(BDI-Zn). Coates等[
金属-N-杂环卡宾配合物(M-NHCs)是目前较好的催化剂体系之一. N-杂环卡宾(NHCs)由于其强大的σ供体和适应性的π接受能力而成为均相催化中普遍存在的辅助配体,所以NHCs在均相催化[
硫脲-金属盐催化剂作为一种内酯和交酯的聚合催化剂,可快速催化和选择性开环聚合. Waymouth等[
ε-CL可以通过不同的机理进行聚合,可通过以金属为中心的配合物通过配位/插入机制聚合,它们通常能很好地控制聚合物的摩尔质量,并提供分子量分布窄、端基明确的聚合物,如在ε-CL的开环聚合中使用的催化剂(Cat. 15, 16, 17)[
Nomura等[
周希等[
钛配合物是开环聚合催化剂的一种,因为它们具有低毒和高Lewis酸,并且钛配合物的配位数对催化活性有很大的影响,它们可以由配体和四醇盐前驱体一步反应直接合成. 在钛系金属配合物催化LA与ε-CL的共聚体系中,Upitak等[
Fig. 2 Titanium complexes for the copolymerization of LA and CL.
二氧化碳(CO2)是主要的可再生碳资源之一,因为它资源丰富、价格低廉、无毒、不可燃. 脂肪族聚碳酸酯由于其可生物降解性、低毒性和良好的生物相容性,近年来在生物医学领域的应用引起了人们的极大关注[
Fig. 3 Bimetallic zinc complexes.
在铁系配合物催化合成聚碳酸酯中,铁是过渡金属中的一种有吸引力的替代品,因为它在地球中的丰度高,成本相对较低,而且具有可持续性,并且它还是所有生物体的基本元素,因此在环境中和动植物体中都能很好地耐受. 所以对基于铁配合物的高效均相催化体系进行开发非常有前景,因为这种催化剂在生产大规模化工商品和制药工业中具有明显的优势. 配体可分为氮基配体(大环配体、氨基、酰胺基吡啶配体)和苯氧基配体(苯氧基胺配体、苯氧亚胺配体、苯氧基硫醚配体)[
Fig. 4 Iron complexes.
Sugimoto课题组研究了一系列铝手性催化剂,用于CO2和CHO的对映选择性共聚. 通过使用Al-Salen配合物,用乙酸四乙酯(Et4NOAc)活化,得到高度交替的共聚物,使用类似的反应条件,通过与路易斯碱(N,N-二甲基-4-氨基吡啶)显著影响助催化剂配对的Al-β-酮亚胺酸盐配合物来提高反应的选择性. 通过引入双胺路易斯碱助催化剂,立体选择性进一步提高至80%[
聚α-羟基酸是一类重要的生物降解聚合物,具有广泛的应用前景,其与内酯、交酯的开环聚合相比优势在于氨基酸前体具有丰富的侧基官能团,并且合成的功能单体数量多且种类繁多. O-羧基环内酸酐(OCA)已成为合成聚α-羟基酸的单体等效物. 2006年,O-羧基环内酸酐(OCA)的开环聚合已经成为功能化聚酯的一条路线[
鉴于环境友好材料的重要性日益增加,人们正在寻找替代品,以替代需要苛刻反应条件的催化剂. 此外,将合成的材料用于人体内需要生物相容性,但是金属催化剂在开环聚合反应中造成的残留并且催化剂对最终产品的污染是一个常见问题[
有机酸性催化剂与有机碱性催化剂相比,有机酸催化剂具有范围广、简单、反应温和的特点,但是对于催化开环聚合的研究还不够深入. 目前为止,HCl·Et2O配合物[
Schwesinger[
Fig. 5 Organocatalysts for stereoselective ROP of rac-LA.
Michael[
N-杂环卡宾[
在催化开环聚合ε-CL中,Krzysztof[
2016年,第一个基于CO2的无金属聚碳酸酯合成是在卤化铵等有机阳离子的环境下,用强路易斯酸(三乙基硼烷)活化环氧化合物来实现的[
在环酸酐的开环聚合中,Tao[
环酸酐与环氧化合物[
脂肪酶在许多合成中是有机金属催化剂的良性替代品,因为它们使用安全并且可以通过减少有毒金属残留物来改善产品的生物相容性. 此外,脂肪酶的使用遵循几种绿色化学原理. 它们是可再生的,可重复使用的,并且可以在温和条件下起作用,同时可催化立体选择性和区域特异性反应. 酶催化一般有几个特点:具有高催化活性,能在温和的温度、压力、溶剂、中性pH值等条件下进行反应,在大多数情况下产生完美的结构调节产物.
洋葱假单胞菌脂肪酶以其在不对称合成中的高立体选择性而闻名. 洋葱伯克霍尔德氏菌的PS脂肪酶也被松村课题组用于六元LA的聚合[
脂肪酶催化聚合是制备聚碳酸酯的一种可行的替代方法,因为化学方法通常需要消除二氧化碳(导致醚键),所以需要非常纯的单体和无水条件.
开环聚合催化剂在近10年来得到了很大的发展,通过开环聚合合成了应用广泛的材料. 金属基催化剂发展较为成熟,有机催化剂与脂肪酶催化剂发展迅猛. 金属基催化剂一般由配体和中心金属组成,在结构上具有较大的可调性,能够在聚合活性、立体选择性、混合单体共聚的序列调控等方面实现有效控制,另外诸如辛酸亚锡等催化剂也在工业界有着广泛的应用,然而金属基催化剂会导致聚合物材料中含有金属残留物,限制了其性能和应用,有机催化剂与酶催化剂其特点是反应温度较低,并且对水和氧具有耐受性. 由于没有副反应,有机催化剂可以获得精确的分子结构,在生物医药方面应用较为广泛,并且可再生重复使用. 然而有机催化剂在结构上的调节能力较为有限,无法完全适配广泛的催化要求,另外部分高活性有机催化剂在聚合后期副反应严重,聚合产物也需要严格提纯,否则后续的高温加工过程会加剧聚合物的降解.
在未来的研究中,开发具有广泛应用潜力的催化体系将是本领域的核心研究目标之一,尤其是在保持高聚合可控程度、立体选择性的同时,如何大幅提高催化剂的聚合活性是下一步的关键科学问题. 除此以外,使聚合反应条件更为温和、最大程度上减少有毒有害物质的残留、应用绿色反应体系、降低催化体系的价格等也将是需要考虑的重要因素.
Bhattacharjee J, Sarkar A, Panda T K. Chem Rec, 2021, 21(8): 1898-1911. doi:10.1002/tcr.202100148 [百度学术]
Contreras-Ramirez J M, Monsalve M. Polym Sci, Ser B, 2021, 63(2): 94-102. doi:10.1134/s1560090421020044 [百度学术]
Hevilla V, Sonseca A, Echeverria C, Munoz-Bonilla A, Fernandez-Garcia M. Macromol Biosci, 2021, 21(10): 2100156. doi:10.1002/mabi.202100156 [百度学术]
Nabgui A, El Assimi T, El Meziane A, Luinstra G A, Raihane M, Gouhier G, Thebault P, Draoui K, Lahcini M. Eur Polym J, 2021, 156: 110602. doi:10.1016/j.eurpolymj.2021.110602 [百度学术]
Nomura K, Awang N W B. ACS Sustain Chem Eng, 2021, 9(16): 5486-5505 [百度学术]
Rao W, Cai C, Tang J, Wei Y, Gao C, Yu L, Ding J. Chinese J Chem, 2021, 39(7): 1965-1974. doi:10.1002/cjoc.202000519 [百度学术]
Yang P B, Davidson M G, Edler K J, Brown S. Biomacromolecules, 2021, 22(9): 3649-3667. doi:10.1021/acs.biomac.1c00638 [百度学术]
Garcia-Gallego S, Stenstrom P, Mesa-Antunez P, Zhang Y, Malkoch M. Biomacromolecules, 2020, 21(10): 4273-4279. doi:10.1021/acs.biomac.0c01068 [百度学术]
Li M, Zhou L, Zhang Z, Wang Q, Gao J, Zhang S, Lei L. Polym Chem, 2021, 12(35): 5069-5076. doi:10.1039/d1py00892g [百度学术]
Plajer A J, Williams C K. Angew Chem Int Ed, 2021, 60(24): 13372-13379. doi:10.1002/anie.202101180 [百度学术]
Cheng K, Lu S, Wang K, Luo G. React Chem Eng, 2021, 7(1): 76-83. doi:10.1039/d1re00434d [百度学术]
Li C, Li Y. Chem J Chinese U, 2021, 42(10): 3203-3210. doi:10.1016/s1872-2067(21)63812-3 [百度学术]
Martinez de Ilarduya A, Munoz Guerra S. Polym Chem, 2020, 11(30): 4850-4860. doi:10.1039/d0py00258e [百度学术]
Moins S, Henoumont C, de Roover Q, Laurent S, de Winter J, Coulembier O. Catal Sci Technol, 2021, 11(13): 4387-4391. doi:10.1039/d1cy00756d [百度学术]
Zhang X, Jiang Y, Ma Q, Hu S, Wang Q, Liao S. Eur Polym J, 2020, 123: 109449. doi:10.1016/j.eurpolymj.2019.109449 [百度学术]
Ryzhakov D, Printz G, Jacques B, Messaoudi S, Dumas F, Dagorne S, Le Bideau F. Polym Chem, 2021, 12(20): 2932-2946. doi:10.1039/d1py00020a [百度学术]
Abd Elwakil M M, Gao T, Isono T, Sato Y, Elewa Y H A, Satoh T, Harashima H. Mater Horiz, 2021, 8(8): 2251-2259. doi:10.1039/d1mh00185j [百度学术]
Chin A L, Wang X, Tong R. Macromol Biosci, 2021, 21(7): 2100087. doi:10.1002/mabi.202100087 [百度学术]
Gupta P K, Gahtori R, Govarthanan K, Sharma V, Pappuru S, Pandit S, Mathuriya A S, Dholpuria S, Bishi D K. Mat Sci Eng C-Mater, 2021, 127: 112198. doi:10.1016/j.msec.2021.112198 [百度学术]
Zhao G, Ge T, Yan Y, Shuai Q, Su W K. Int J Mol Sci, 2021, 22(19): 10407. doi:10.3390/ijms221910407 [百度学术]
Guo Z, Duan R, Deng M, Pang X, Hu C, Chen X. Sci China Chem, 2015, 58(11): 1741-1747. doi:10.1007/s11426-015-5461-3 [百度学术]
Guo S, Sun C, Meng L, Zeng Y. J Comput Chem, 2019, 40(32): 2827-2833. doi:10.1002/jcc.26059 [百度学术]
Kim da H, Yoo J Y, Ko Y S. J Nanosci Nanotechnol, 2016, 16(5): 4539-4543. doi:10.1166/jnn.2016.11025 [百度学术]
Kurokawa K, Yamashita K, Doi Y, Abe H. Biomacromolecules, 2008, 9(3): 1071-1078. doi:10.1021/bm701259r [百度学术]
Osten K M, Mehrkhodavandi P. Acc Chem Res, 2017, 50(11): 2861-2869. doi:10.1021/acs.accounts.7b00447 [百度学术]
Maruta Y, Abiko A. Polym Bull, 2014, 71(6): 1433-1440. doi:10.1007/s00289-014-1133-2 [百度学术]
Pappuru S, Chakraborty D. Eur Polym J, 2019, 121: 109276. doi:10.1016/j.eurpolymj.2019.109276 [百度学术]
Zhu Y, Romain C, Poirier V, Williams C K. Macromolecules, 2015, 48(8): 2407-2416. doi:10.1021/acs.macromol.5b00225 [百度学术]
Ghosh S, Glockler E, Wolper C, Tjaberings A, Groschel A H, Schulz S. Dalton Trans, 2020, 49(38): 13475-13486. doi:10.1039/d0dt02831b [百度学术]
Bayer U, Anwander R. Dalton Trans, 2020, 49(48): 17472-17493. doi:10.1039/d0dt03578e [百度学术]
Wu J, Chen H Y, Hormnirun P. Front Chem, 2019, 7: 404. doi:10.3389/fchem.2019.00404 [百度学术]
Trott G, Saini P K, Williams C K. Philos Trans A Math Phys Eng Sci, 2016, 374(2061): 20150085. doi:10.1098/rsta.2015.0085 [百度学术]
Zikode M, Ojwach S O, Akerman M P. J Mol Catal A Chem, 2016, 413: 24-31. doi:10.1016/j.molcata.2015.12.008 [百度学术]
Jia B, Hao J, Wei X, Tong H, Zhou M, Liu D. J Organomet Chem, 2017, 831: 11-17. doi:10.1016/j.jorganchem.2016.12.031 [百度学术]
Balasanthiran V, Chisholm M H, Choojun K, Durr C B, Wambua P M. Polyhedron, 2016, 103: 235-240. doi:10.1016/j.poly.2015.02.024 [百度学术]
D'Auria I, Tedesco C, Mazzeo M, Pellecchia C. Dalton Trans, 2017, 46(36): 12217-12225. doi:10.1039/c7dt02445b [百度学术]
Devaine-Pressing K, Lehr J H, Pratt M E, Dawe L N, Sarjeant A A, Kozak C M. Dalton Trans, 2015, 44(27): 12365-12375. doi:10.1039/c5dt00236b [百度学术]
Chen H Y, Mialon L, Abboud K A, Miller S A. Organometallics, 2012, 31(15): 5252-5261. doi:10.1021/om300121c [百度学术]
Huang T L, Chen C T. Dalton Trans, 2013, 42(25): 9255-9262. doi:10.1039/c2dt32300a [百度学术]
Colwell J M, Wentrup-Byrne E, George G A, Schué F. Polym Int, 2015, 64(5): 654-660. doi:10.1002/pi.4823 [百度学术]
Dai Z, Sun Y, Xiong J, Pan X, Tang N, Wu J. Catal Sci Technol, 2016, 6(2): 515-520. doi:10.1039/c5cy01194a [百度学术]
Biernesser A B, Delle Chiaie K R, Curley J B, Byers J A. Angew Chem Int Ed, 2016, 55(17): 5251-5254. doi:10.1002/anie.201511793 [百度学术]
Ahn S H, Chun M K, Kim E, Jeong J H, Nayab S, Lee H. Polyhedron, 2017, 127: 51-58. doi:10.1016/j.poly.2017.01.050 [百度学术]
Fortun S, Daneshmand P, Schaper F. Angew Chem Int Ed, 2015, 54(46): 13669-13672. doi:10.1002/anie.201505674 [百度学术]
Akpan E D, Ojwach S O, Omondi B, Nyamori V O. New J Chem, 2016, 40(4): 3499-3510. doi:10.1039/c5nj03159a [百度学术]
Wu J, Yu T L, Chen C T, Lin C C. Coordin Chem Rev, 2006, 250(5-6): 602-626. doi:10.1016/j.ccr.2005.07.010 [百度学术]
Shannon R D. Acta Crystallogr A, 1976, 32(5): 751-767. doi:10.1107/s0567739476001551 [百度学术]
Bochkarev M N, Zakharov L N, Kalinina G S. Organoderivatives of Rare Earth Elements. Dordrecht: Kluwer Academic Publishers, 1995. doi:10.1007/978-94-011-0361-9 [百度学术]
Egorova K S, Ananikov V P. Organometallics, 2017, 36(21): 4071-4090. doi:10.1021/acs.organomet.7b00605 [百度学术]
Wu J, Yu T, Chen C, Lin C. Coord Chem Rev, 2006, 250(5-6): 602-626. doi:10.1016/j.ccr.2005.07.010 [百度学术]
Platel R H, Hodgson L M, Williams C K. Polym Rev (Phila Pa), 2008, 48(1): 11-63. doi:10.1080/15583720701834166 [百度学术]
Penczek S, Cypryk M, Duda A, Kubisa P, Slomkowski S. Prog Polym Sci, 2007, 32(2): 247-282. doi:10.1016/j.progpolymsci.2007.01.002 [百度学术]
Gupta A P, Kumar V. Eur Polym J, 2007, 43(10): 4053-4074. doi:10.1016/j.eurpolymj.2007.06.045 [百度学术]
Cheng M, Attygalle A B, Lobkovsky E B, Coates G W. J Am Chem Soc, 1999, 121(49): 11583-11584. doi:10.1021/ja992678o [百度学术]
Chamberlain B M, Cheng M, Moore D R, Ovitt T M, Lobkovsky E B, Coates G W. J Am Chem Soc, 2001, 123(14): 3229-3238. doi:10.1021/ja003851f [百度学术]
Rosen T, Goldberg I, Navarra W, Venditto V, Kol M. Angew Chem Int Ed, 2018, 57(24): 7191-7195. doi:10.1002/anie.201803063 [百度学术]
Stanford M J, Dove A P. Chem Soc Rev, 2010, 39(2): 486-494. doi:10.1039/b815104k [百度学术]
Hormnirun P, Marshall E L, Gibson V C, White A J P, Williams D J. J Am Chem Soc, 2004, 126(9): 2688-2689. doi:10.1021/ja038757o [百度学术]
Hormnirun P, Marshall E L, Gibson V C, Pugh R I, White A J P. P Natl Acad Sci USA, 2006, 103(42): 15343-15348. doi:10.1073/pnas.0602765103 [百度学术]
Borner J, Vieira Idos S, Pawlis A, Doring A, Kuckling D, Herres-Pawlis S. Chem Eur J, 2011, 17(16): 4507-4512. doi:10.1002/chem.201002690 [百度学术]
Beament J, Mahon M F, Buchard A, Jones M D. New J Chem, 2017, 41(5): 2198-2203. doi:10.1039/c6nj03844a [百度学术]
Maudoux N, Roisnel T, Dorcet V, Carpentier J F, Sarazin Y. Chem Eur J, 2014, 20(20): 6131-6147. doi:10.1002/chem.201304788 [百度学术]
Liu H, Shi X. Inorg Chem, 2021, 60(2): 705-717. doi:10.1021/acs.inorgchem.0c02741 [百度学术]
Horeglad P, Szczepaniak G, Dranka M, Zachara J. Chem Commun, 2012, 48(8): 1171-1173. doi:10.1039/c2cc16072b [百度学术]
Brulé E, Gaillard S, Rager M N, Roisnel T, Guérineau V, Nolan S P, Thomas C M. Organometallics, 2011, 30(10): 2650-2653. doi:10.1021/om200271q [百度学术]
Fliedel C, Vila-Viçosa D, Calhorda M J, Dagorne S, Avilés T. ChemCatChem, 2014: 1357-1367. doi:10.1002/cctc.201490032 [百度学术]
Arbaoui A, Redshaw C. Polym Chem, 2010, 1(6): 801-826. doi:10.1039/b9py00334g [百度学术]
Pan Y, Jiang X, So Y M, To C T, He G. Catalysts, 2020, 10(1): 71. doi:10.3390/catal10010071 [百度学术]
Zhang M, Ni X, Shen Z. Organometallics, 2014, 33(23): 6861-6867. doi:10.1021/om500930m [百度学术]
Liu B, Roisnel T, Maron L, Carpentier J F, Sarazin Y. Chem Eur J, 2013, 19(12): 3986-3994. doi:10.1002/chem.201204340 [百度学术]
Aluthge D C, Patrick B O, Mehrkhodavandi P. Chem Commun, 2013, 49(39): 4295-4297. doi:10.1039/c2cc33519k [百度学术]
Roukoss C, Fiddy S, de Mallmann A, Rendon N, Basset J M, Kuntz E, Coperet C. Dalton Trans, 2007, 47: 5546-5548. doi:10.1039/b711015d [百度学术]
Xiong J, Zhang J, Sun Y, Dai Z, Pan X, Wu J. Inorg Chem, 2015, 54(4): 1737-1743. doi:10.1021/ic502685f [百度学术]
Zhang J, Xiong J, Sun Y, Tang N, Wu J. Macromolecules, 2014, 47(22): 7789-7796. doi:10.1021/ma502000y [百度学术]
Dai Z, Sun Y, Xiong J, Pan X, Wu J. ACS Macro Lett, 2015, 4(5): 556-560. doi:10.1021/acsmacrolett.5b00209 [百度学术]
Cui Y, Chen C, Sun Y, Wu J, Pan X. Inorg Chem Front, 2017, 4(2): 261-269. doi:10.1039/c6qi00449k [百度学术]
Harinath A, Bhattacharjee J, Sarkar A, Panda T K. New J Chem, 2019, 43(23): 8882-8891. doi:10.1039/c9nj01130g [百度学术]
Chisholm M H, Gallucci J, Phomphrai K. Chem Commun, 2003, 1: 48-49. doi:10.1039/b208679d [百度学术]
Clark L, Deacon G B, Forsyth C M, Junk P C, Mountford P, Townley J P, Wang J. Dalton Trans, 2013, 42(25): 9294-9312. doi:10.1039/c3dt00065f [百度学术]
Nifant'Ev I, Shlyakhtin A, Bagrov V, Minyaev M, Churakov A, Karchevsky S, Birin K, Ivchenko P. Dalton Trans, 2017, 46(36): 12132-12146. doi:10.1039/c7dt02469j [百度学术]
Hu J, Kan C, Wang H, Ma H. Macromolecules, 2018, 51(14): 5304-5312. doi:10.1021/acs.macromol.8b00924 [百度学术]
Collins R A, Unruangsri J, Mountford P. Dalton Trans, 2013, 42(3): 759-769. doi:10.1039/c2dt32151c [百度学术]
Bhattacharjee J, Harinath A, Nayek H P, Sarkar A, Panda T K. Chem Eur J, 2017, 23(39): 9319-9331. doi:10.1002/chem.201700672 [百度学术]
Kottalanka R K, Adimulam H, Bhattacharjee J, Babu H V, Panda T K. Dalton Trans, 2014, 43(23): 8757-8766. doi:10.1039/c4dt00669k [百度学术]
Lyubov D M, Tolpygin A O, Trifonov A A. Coord Chem Rev, 2019, 392: 83-145. doi:10.1016/j.ccr.2019.04.013 [百度学术]
Shen Ting(沈婷), Ni Xufeng(倪旭峰), Ling Jun(凌君). Acta Polymerica Sinica(高分子学报), 2021, 52(5): 445-455. doi:10.11777/j.issn1000-3304.2020.20267 [百度学术]
Wang F, Liu L J, Wang W, Li S, Shi M. Coord Chem Rev, 2012, 256(9-10): 804-853. doi:10.1016/j.ccr.2011.11.013 [百度学术]
Fliedel C, Labande A, Manoury E, Poli R. Coord Chem Rev, 2019, 394: 65-103. doi:10.1016/j.ccr.2019.05.003 [百度学术]
Zhao Q, Meng G, Nolan S P, Szostak M. Chem Rev, 2020, 120(4): 1981-2048. doi:10.1021/acs.chemrev.9b00634 [百度学术]
Grossmann A, Enders D. Angew Chem Int Ed, 2012, 51(2): 314-325. doi:10.1002/anie.201105415 [百度学术]
Naumann S, Dove A P. Polym Int, 2016, 65(1): 16-27. doi:10.1002/pi.5034 [百度学术]
Enders D, Niemeier O, Henseler A. Chem Rev, 2007, 107(12): 5606-5655. doi:10.1021/cr068372z [百度学术]
Wang Z Y, Xu G Q, Zhou L, Lv C D, Yang R L, Dong B Z, Wang Q G. Chinese J Polym Sci, 2021, 39(6): 709-715 [百度学术]
Milanovic S D, Pejic B J, Lazic V L, Konstantinovic B B, Blagojevic M N. Hem Ind, 2017, 71(1): 85-94. doi:10.2298/hemind140623067m [百度学术]
Slomkowski S, Penczek S, Duda A. Polym Adv Technol, 2014, 25(5): 436-447. doi:10.1002/pat.3281 [百度学术]
Kallrot M, Edlund U, Albertsson A C. Biomacromolecules, 2007, 8(8): 2492-2496. doi:10.1021/bm700442j [百度学术]
Nagarajan V, Mohanty A K, Misra M. ACS Sustain Chem Eng, 2016, 4(6): 2899-2916. doi:10.1021/acssuschemeng.6b00321 [百度学术]
Muthuraj R, Misra M, Mohanty A K. J Appl Polym Sci, 2017, 135(24): 45726. doi:10.1002/app.45726 [百度学术]
Sangeetha V H, Deka H, Varghese T O, Nayak S K. Polym Compos, 2018, 39(1): 81-101. doi:10.1002/pc.23906 [百度学术]
Nomura N, Akita A, Ishii R, Mizuno M. J Am Chem Soc, 2010, 132(6): 1750-1751. doi:10.1021/ja9089395 [百度学术]
D'Auria I, Lamberti M, Rescigno R, Venditto V, Mazzeo M. Heliyon, 2021, 7(7): e07630. doi:10.1016/j.heliyon.2021.e07630 [百度学术]
Hermann A, Hill S, Metz A, Heck J, Hoffmann A, Hartmann L, Herres-Pawlis S. Angew Chem Int Ed, 2020, 59(48): 21778-21784. doi:10.1002/anie.202008473 [百度学术]
Zhou X, Hong L. Colloid Polym Sci, 2013, 291(9): 2155-2162. doi:10.1007/s00396-013-2950-9 [百度学术]
Upitak K, Wattanathana W, Nanok T, Chuawong P, Hormnirun P. Dalton Trans, 2021, 50(31): 10964-10981. doi:10.1039/d1dt01470f [百度学术]
Gilmour D J, Webster R L, Perry M R, Schafer L L. Dalton Trans, 2015, 44(27): 12411-12419. doi:10.1039/c5dt01162k [百度学术]
Hatamzadeh M, Sarvari R, Massoumi B, Agbolaghi S, Samadian F. Int J Polym Mater, 2020, 69(17): 1112-1122. doi:10.1080/00914037.2019.1667800 [百度学术]
Zhang H, Zhang Q, Cai Q, Luo Q, Li X, Li X, Zhang K, Zhu W. Chem Eng J, 2021, 424: 130432. doi:10.1016/j.cej.2021.130432 [百度学术]
Della Monica F, Maity B, Pehl T, Buonerba A, De Nis A, Monari M, Grassi A, Rieger B, Cavallo L, Capacchione C. ACS Catal, 2018, 8(8): 6882-6893. doi:10.1021/acscatal.8b01695 [百度学术]
Lu X B, Ren W M, Wu G P. Acc Chem Res, 2012, 45(10): 1721-1735. doi:10.1021/ar300035z [百度学术]
Shi Z, Jiang Q, Song Z, Wang Z, Gao C. Polym Chem, 2018, 9(38): 4733-4743. doi:10.1039/c8py00824h [百度学术]
Xia W, Vagin S I, Rieger B. Chem Eur J, 2014, 20(47): 15499-15504. doi:10.1002/chem.201404147 [百度学术]
Chen C, Gnanou Y, Feng X. Macromolecules, 2021, 54(20): 9474-9481. doi:10.1021/acs.macromol.1c01460 [百度学术]
Chukanova O M, Korenkov K O, Garifullin N O, Sheverdenkina O G, Sedov I V. Kinet Catal 2020, 61(4): 569-574. doi:10.1134/s0023158420030088 [百度学术]
Nakabayashi Y, Nakano K. Polym J, 2021, 53(1): 203-208. doi:10.1038/s41428-020-00423-5 [百度学术]
Yang G W, Xu C K, Xie R, Zhang Y Y, Zhu X F, Wu G P. J Am Chem Soc, 2021, 143(9): 3455-3465. doi:10.1021/jacs.0c12425 [百度学术]
Arbaoui A, Redshaw C, Homden D M, Wright J A, Elsegood M R J. Dalton Trans, 2009, 41: 8911-8922. doi:10.1039/b902402f [百度学术]
Abbina S, Chidara V K, Bian S, Ugrinov A, Du G. Chemistry-Select, 2016, 1(12): 3175-3183. doi:10.1002/slct.201600581 [百度学术]
Kember M R, Williams C K. J Am Chem Soc, 2012, 134(38): 15676-15679. doi:10.1021/ja307096m [百度学术]
Della Monica F, Buonerba A, Capacchione C. Adv Synth Catal, 2019, 361(2): 265-282. doi:10.1002/adsc.201801281 [百度学术]
Zhang D, Zhang H, Hadjichristidis N, Gnanou Y, Feng X. Macromolecules, 2016, 49(7): 2484-2492. doi:10.1021/acs.macromol.6b00203 [百度学术]
Bonduelle C, Martin-Vaca B, Cossio F P, Bourissou D. Chem Eur J, 2008, 14(17): 5304-5312. doi:10.1002/chem.200800346 [百度学术]
Du Boullay O T, Bonduelle C, Martin-Vaca B, Bourissou D. Chem Commun, 2008, 15: 1786-1788 [百度学术]
Yin Q, Tong R, Xu Y X, Baek K, Dobrucki L W, Fan T M, Cheng J J. Biomacromolecules, 2013, 14(3): 920-929. doi:10.1021/bm301999c [百度学术]
Jia F, Chen X Y, Zheng Y, Qin Y S, Tao Y H, Wang X H. Chem Commun, 2015, 51(40): 8504-8507. doi:10.1039/c5cc01329a [百度学术]
Feng Q Y, Zhong Y L, Xie L H, Tong R. Synlett, 2017, 28(15): 1857-1866 [百度学术]
Zhong Y L, Feng Q Y, Wang X Q, Yang L, Korovich A G, Madsen L A, Tong R. Chem Sci, 2021, 12(10): 3702-3712. doi:10.1039/d0sc05550f [百度学术]
Zhong Y L, Feng Q Y, Wang X Q, Chen J, Cai W J, Tong R. ACS Macro Lett, 2020, 9(8): 1114-1118. doi:10.1021/acsmacrolett.0c00364 [百度学术]
Wang R, Zhang J, Yin Q, Xu Y, Cheng J, Tong R. Angew Chem Int Ed, 2016, 55(42): 13010-13014. doi:10.1002/anie.201605508 [百度学术]
Feng Q, Tong R. J Am Chem Soc, 2017, 139(17): 6177-6182. doi:10.1021/jacs.7b01462 [百度学术]
Sun Y, Jia Z, Chen C, Cong Y, Mao X, Wu J. J Am Chem Soc, 2017, 139(31): 10723-10732. doi:10.1021/jacs.7b04712 [百度学术]
Chen X, Lai H, Xiao C, Tian H, Chen X, Tao Y, Wang X. Polym Chem, 2014, 5(22): 6495-6502. doi:10.1039/c4py00930d [百度学术]
Cui Y, Jiang J, Pan X, Wu J. Chem Commun, 2019, 55(86): 12948-12951. doi:10.1039/c9cc06108h [百度学术]
Gentile P, Chiono V, Carmagnola I, Hatton P V. Int J Mol Sci, 2014, 15(3): 3640-3659. doi:10.3390/ijms15033640 [百度学术]
Kiesewetter M K, Shin E J, Hedrick J L, Waymouth R M. Macromolecules, 2010, 43(5): 2093-2107. doi:10.1021/ma9025948 [百度学术]
Thomas C, Bibal B. Green Chem, 2014, 16(4): 1687-1699. doi:10.1039/c3gc41806e [百度学术]
Ottou W N, Sardon H, Mecerreyes D, Vignolle J, Taton D. Prog Polym Sci, 2016, 56: 64-115. doi:10.1016/j.progpolymsci.2015.12.001 [百度学术]
Hu S, Zhao J, Zhang G, Schlaad H. Prog Polym Sci, 2017, 74: 34-77. doi:10.1016/j.progpolymsci.2017.07.002 [百度学术]
Nederberg F, Connor E F, Moller M, Glauser T, Hedrick J L. Angew Chem Int Ed, 2001, 40(14): 2712-2715. doi:10.1002/1521-3773(20010716)40:14<2712::aid-anie2712>3.0.co;2-z [百度学术]
Dove A P, Pratt R C, Lohmeijer B G G, Waymouth R M, Hedrick J L. J Am Chem Soc, 2005, 127(40): 13798-13799. doi:10.1021/ja0543346 [百度学术]
Zhu J B, Chen E Y X. J Am Chem Soc, 2015, 137(39): 12506-12509. doi:10.1021/jacs.5b08658 [百度学术]
Thomas C, Milet A, Peruch F, Bibal B. Polym Chem, 2013, 4(12): 3491-3498. doi:10.1039/c3py00304c [百度学术]
Zhang L, Pratt R C, Nederberg F, Horn H W, Rice J E, Waymouth R M, Wade C G, Hedrick J L. Macromolecules, 2010, 43(3): 1660-1664. doi:10.1021/ma901776x [百度学术]
Ren C, Zhu X, Zhao N, Shen Y, Chen L, Liu S, Li Z. Eur Polym J, 2019, 119: 130-135. doi:10.1016/j.eurpolymj.2019.07.022 [百度学术]
Shi J, Zhao N, Xia S, Liu S, Li Z. Polym Chem, 2019, 10(17): 2126-2133. doi:10.1039/c9py00247b [百度学术]
Myers M, Connor E F, Glauser T, Möck A, Nyce G, Hedrick J L. J Polym Sci, Part A: Polym Chem, 2002, 40(7): 844-851. doi:10.1002/pola.10168 [百度学术]
Lou X, Detrembleur C, Jérôme R. Macromolecules, 2002, 35(4): 1190-1195. doi:10.1021/ma0113677 [百度学术]
Shibasaki Y, Sanada H, Yokoi M, Sanda F, Endo T. Macromolecules, 2000, 33(12): 4316-4320. doi:10.1021/ma992138b [百度学术]
Persson P V, Schröder J, Wickholm K, Hedenström E, Iversen T. Macromolecules, 2004, 37(16): 5889-5893. doi:10.1021/ma049562j [百度学术]
Persson P V, Casas J, Iversen T, Córdova A. Macromolecules, 2006, 39(8): 2819-2822. doi:10.1021/ma0521710 [百度学术]
Casas J, Persson P V, Iversen T, Cordova A. Adv Synth Catal, 2004, 346(9-10): 1087-1089. doi:10.1002/adsc.200404082 [百度学术]
Wheaton C A, Hayes P G. Comments Mod Chem A Comments Inorg Chem, 2011, 32(3): 127-162. doi:10.1080/02603594.2011.634037 [百度学术]
Gazeau-Bureau S, Delcroix D, Martín-Vaca B, Bourissou D, Navarro C, Magnet S. Macromolecules, 2008, 41(11): 3782-3784. doi:10.1021/ma800626q [百度学术]
Jin Y, Ji Y, He X, Kan S, Xia H, Liang B, Chen J, Wu H, Guo K, Li Z. Polym Chem, 2014, 5(8): 3098-3106. doi:10.1039/c3py01613g [百度学术]
Wu H, Ji Y, Li Z, Wang X, Zhang Q, Cui S, Wu W, Liu J, Guo K. J Polym Sci, Part A: Polym Chem, 2015, 53(6): 729-736. doi:10.1002/pola.27496 [百度学术]
Makiguchi K, Satoh T, Kakuchi T. Macromolecules, 2011, 44(7): 1999-2005. doi:10.1021/ma200043x [百度学术]
Miao Y, Phuphuak Y, Rousseau C, Bousquet T, Mortreux A, Chirachanchai S, Zinck P. J Polym Sci, Part A: Polym Chem, 2013, 51(10): 2279-2287. doi:10.1002/pola.26612 [百度学术]
Liu J J, Zhang C, Li Z J, Zhang L, Xu J X, Wang H X, Xu S Q, Guo T F, Yang K, Guo K. Eur Polym J, 2019, 113: 197-207. doi:10.1016/j.eurpolymj.2019.01.057 [百度学术]
Liu J, Cui S, Li Z, Xu S, Xu J, Pan X, Liu Y, Dong H, Sun H, Guo K. Polym Chem, 2016, 7(35): 5526-5535. doi:10.1039/c6py01210h [百度学术]
Kan S, Jin Y, He X, Chen J, Wu H, Ouyang P, Guo K, Li Z. Polym Chem, 2013, 4(21): 5432-5439. doi:10.1039/c3py00667k [百度学术]
Mezzasalma L, Harrisson S, Saba S, Loyer P, Coulembier O, Taton D. Biomacromolecules, 2019, 20(5): 1965-1974. doi:10.1021/acs.biomac.9b00190 [百度学术]
Zhang J, Xu L, Xiao W, Chen Y, Dong Z, Xu J, Lei C. Eur Polym J, 2021, 157: 110643. doi:10.1016/j.eurpolymj.2021.110643 [百度学术]
Schwesinger R, Hasenfratz C, Schlemper H, Walz L, Peters E M, Peters K, von Schnering H G. Angew Chem Int Ed Engl, 1993, 32(9): 1361-1363. doi:10.1002/anie.199313611 [百度学术]
Shen Yong(沈勇), Li Zhibo(李志波). Acta Polymerica Sinica (高分子学报), 2020, 51(8): 777-790. doi:10.11777/j.issn1000-3304.2020.20050 [百度学术]
Liu S, Li H, Zhao N, Li Z. ACS Macro Lett, 2018, 7(6): 624-628. doi:10.1021/acsmacrolett.8b00353 [百度学术]
Lin B, Waymouth R M. J Am Chem Soc, 2017, 139(4): 1645-1652. doi:10.1021/jacs.6b11864 [百度学术]
Lin B, Waymouth R M. Macromolecules, 2018, 51(8): 2932-2938. doi:10.1021/acs.macromol.8b00540 [百度学术]
Zhang X, Jones G O, Hedrick J L, Waymouth R M. Nat Chem, 2016, 8(11): 1047-1053. doi:10.1038/nchem.2574 [百度学术]
Yuan R, Xu G, Lv C, Zhou L, Yang R, Wang Q. Mater Today Commun, 2020, 22: 100747. doi:10.1016/j.mtcomm.2019.100747 [百度学术]
Goldys A M, Dixon D J. Macromolecules, 2014, 47(4): 1277-1284. doi:10.1021/ma402258y [百度学术]
Lalanne-Tisne M, Mees M A, Eyley S, Zinck P, Thielemans W. Carbohydr Polym, 2020, 250: 116974. doi:10.1016/j.carbpol.2020.116974 [百度学术]
Miao Y, Rousseau C, Mortreux A, Martin P, Zinck P. Polymer, 2011, 52(22): 5018-5026. doi:10.1016/j.polymer.2011.08.040 [百度学术]
Ding Q, Fan X, Wu J. Curr Org Chem, 2014, 18(6): 700-718. doi:10.2174/1385272819666140201003238 [百度学术]
Connor E F, Nyce G W, Myers M, Möck A, Hedrick J L. J Am Chem Soc, 2002, 124(6): 914-915. doi:10.1021/ja0173324 [百度学术]
Bai J, Wu N, Wang Y, Li Q, Wang X, Zhang L. RSC Adv, 2016, 6(109): 108045-108050. doi:10.1039/c6ra24042a [百度学术]
Kaluzynski K, Pretula J, Lewinski P, Kaźmierski S, Penczek S. J Catal, 2020, 392: 97-107. doi:10.1016/j.jcat.2020.09.026 [百度学术]
Zhang D, Boopathi S K, Hadjichristidis N, Gnanou Y, Feng X. J Am Chem Soc, 2016, 138(35): 11117-11120. doi:10.1021/jacs.6b06679 [百度学术]
Andrea K A, Kerton F M. ACS Catal, 2019, 9(3): 1799-1809. doi:10.1021/acscatal.8b04282 [百度学术]
Alves M, Grignard B, Boyaval A, Mereau R, De Winter J, Gerbaux P, Detrembleur C, Tassaing T, Jerome C. ChemSusChem, 2017, 10(6): 1128-1138. doi:10.1002/cssc.201601185 [百度学术]
Li M S, Tao Y, Tang J D, Wang Y C, Zhang X Y, Tao Y H, Wang X H. J Am Chem Soc, 2019, 141(1): 281-289. doi:10.1021/jacs.8b09739 [百度学术]
Chen Ye(陈烨), Liu Shan(刘珊), Zhao Junpeng(赵俊鹏). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1067-1082. doi:10.11777/j.issn1000-3304.2020.20088 [百度学术]
Longo J M, Sanford M J, Coates G W. Chem Rev, 2016, 116(24): 15167-15197. doi:10.1021/acs.chemrev.6b00553 [百度学术]
Paul S, Zhu Y, Romain C, Brooks R, Saini P K, Williams C K. Chem Commun, 2015, 51(30): 6459-6479. doi:10.1039/c4cc10113h [百度学术]
van Zee N J, Coates G W. Angew Chem, 2015, 127(9): 2703-2706. doi:10.1002/ange.201410641 [百度学术]
Ji H Y, Chen X L, Wang B, Pan L, Li Y S. Green Chem, 2018, 20(17): 3963-3973. doi:10.1039/c8gc01641k [百度学术]
Hošťálek Z, Trhlíková O, Walterová Z, Martinez T, Peruch F, Cramail H, Merna J. Eur Polym J, 2017, 88: 433-447. doi:10.1016/j.eurpolymj.2017.01.002 [百度学术]
Yoshizawa-Fujita M, Kakegawara Y, Takeoka Y, Rikukawa M. Kobunshi Ronbunshu, 2013, 70(10): 612-615. doi:10.1295/koron.70.612 [百度学术]
Kobayashi S, Makino A, Matsumoto H, Kunii S, Ohmae M, Kiyosada T, Makiguchi K, Matsumoto A, Horie M, Shoda S I. Biomacromolecules, 2006, 7(5): 1644-1656. doi:10.1021/bm060094q [百度学术]
Zhang J X, Shi H, Wu D, Xing Z, Zhang A J, Yang Y, Li Q S. Process Biochem, 2014, 49(5): 797-806. doi:10.1016/j.procbio.2014.02.006 [百度学术]
0
浏览量
288
下载量
3
CSCD
相关文章
相关作者
相关机构