浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300072
E-mail: liyuajde@tju.edu.cn;
E-mail:weifeng@tju.edu.cn
纸质出版日期:2022-11-20,
网络出版日期:2022-08-24,
收稿日期:2022-03-21,
录用日期:2022-04-24
移动端阅览
陈心怡,李瑀,封伟.基于两性离子的自修复准固态聚合物电解质[J].高分子学报,2022,53(11):1349-1357.
Chen Xin-yi,Li Yu,Feng Wei.Self-healing Solid-state Polymer Electrolyte Based on Zwitterions[J].ACTA POLYMERICA SINICA,2022,53(11):1349-1357.
陈心怡,李瑀,封伟.基于两性离子的自修复准固态聚合物电解质[J].高分子学报,2022,53(11):1349-1357. DOI: 10.11777/j.issn1000-3304.2022.22091.
Chen Xin-yi,Li Yu,Feng Wei.Self-healing Solid-state Polymer Electrolyte Based on Zwitterions[J].ACTA POLYMERICA SINICA,2022,53(11):1349-1357. DOI: 10.11777/j.issn1000-3304.2022.22091.
设计合成了一种以降冰片烯为骨架的基于两性离子的自修复聚合物电解质(SHPE). 聚合物中含有聚乙二醇(PEO)和两性离子2种组分. 其中PEO组分为聚合物提供良好的锂离子传输能力,而两性离子通过离子耦合作用实现自修复. 通过调控两组分的比例,并混入锂盐和离子液体得到一系列SHPE,研究了不同组分对SHPE的电化学性能影响. 电解质在室温下的电导率最高达到7.42×10
-5
S·cm
-1
,该电解质切断后,在60 ℃下,10 h便可恢复91.4%的拉伸强度. 将制备出的电解质组装成锂金属电池,在60 ℃下,以0.2 C的倍率进行充放电测试,其初始放电容量为133.7 mAh·g
-1
,在50圈循环之后,电池仍能保持124.3 mAh·g
-1
的比容量. 电解质在被切割破坏后组装的电池,经8 h的自修复后仍能正常运转,在50圈循环之后保持123.2 mAh·g
-1
的比容量.
In order to solve the problems that microcracks occurring in solid electrolyte which may affect the cycling performance and capacity of lithium-ion battery
a self-healing solid-state polymer electrolyte was prepared based on the combination of a poly(NBPEO-
b
-NBZwit) network
imidazole-based ionic liquid (EMITFSI) and LiTFSI. In this work
polymers with different proportions of NBPEO and NBZwit were prepared
and their self-healing and electrochemical properties were studied. The PEO component endows the polymer with good lithium ion transport capacity
while the zwitterionic ions realize self-healing through ion coupling.
At the same time
because the polymer was mixed with ionic liquid
the interaction between zwitterionic groups and ionic liquid further improves the repair efficiency of SHPE2. The results of mechanical tensile tests showed that the healing efficiency of the mechanical strength reached 91.4% after healing at 60 ℃ for 10 h. Due to the plasticization of ionic liquid and the dissociation of zwitterions to lithium ions
its ionic conductivity can reach up to 7.42×10
-5
S·cm
-1
at room temperature. The results of electrochemical performance tests shows that the electrochemical window of SHPE2 reached 5.0 V versus Li/Li
+
because of the existence of norbornene skeleton. The discharge specific capacity of the lithium metal battery assembled by SHPE2 is 124.3 mAh·g
-1
. The lithium metal battery assembled by healed SHPE2 can still maintain the discharge specific capacity of 123.2 mAh·g
-1
after 50 cycles with a coulombic efficiency of 99.17%. The polymer containing PEO side chain and zwitterion was prepared by ring opening polymerization
which provides a scheme for the design of self-healing polymer electrolyte materials.
聚合物电解质自修复聚乙二醇两性离子开环易位聚合
Polymer electrolyteSelf-healingPoly(ethylene oxide)ZwitterionRing-opening metathesis polymerization
Reddy M V, Mauger A, Julien C M, Paolella A, Zaghib K. Materials, 2020, 13(8): 1884. doi:10.3390/ma13081884http://dx.doi.org/10.3390/ma13081884
Jaumaux P, Liu Q, Zhou D, Xu , Wang T, Wang Y, Kang F, Li B, Wang G. Angew Chem Int Ed, 2020, 59(23): 9134-9142. doi:10.1002/anie.202001793http://dx.doi.org/10.1002/anie.202001793
Zhang D, Ren Y, Hu Y, Li L, Yan F. Chinese J Polym Sci, 2020, 38(5): 506-513. doi:10.1007/s10118-020-2390-1http://dx.doi.org/10.1007/s10118-020-2390-1
JrHallinan D T, Balsara N P. Polym Electrolytes, 2013, 41(1): 503-525. doi:10.1146/annurev-matsci-071312-121705http://dx.doi.org/10.1146/annurev-matsci-071312-121705
Cao C, Li Y, Feng Y, Peng C, Li Z, Feng W. Energy Storage Mater, 2019, 19: 401-407. doi:10.1016/j.ensm.2019.03.004http://dx.doi.org/10.1016/j.ensm.2019.03.004
Feng X, Liu Q, Zheng J, Xu Y, Chen W. Compos Commun, 2022, 29: 101026. doi:10.1016/j.coco.2021.101026http://dx.doi.org/10.1016/j.coco.2021.101026
Zhou B, Zuo C, Xiao Z, Zhou X, He D, Xie X, Xue Z. Chem-A Eur J, 2018, 24(72): 19200-19207. doi:10.1002/chem.201803943http://dx.doi.org/10.1002/chem.201803943
Zhang L, Zhang P, Chang C, Guo W, Guo Z H, Pu X. ACS Appl Mater Interfaces, 2021, 13(39): 46794-46802. doi:10.1021/acsami.1c14462http://dx.doi.org/10.1021/acsami.1c14462
Xiao J, Li Q, Bi Y, Cai M, Dunn B, Glossmann T, Liu J, Osaka T, Sugiura R, Wu B, Yang J, Zhang J, Whittingham M S. Nat Energy, 2020, 5(8): 561-568. doi:10.1038/s41560-020-0648-zhttp://dx.doi.org/10.1038/s41560-020-0648-z
Varshney P K, Gupta S. Ionics, 2011, 17(6): 479-483. doi:10.1007/s11581-011-0563-1http://dx.doi.org/10.1007/s11581-011-0563-1
Tian X, Yang P, Yi Y, Liu P, Wang T, Shu C, Qu L, Tang W, Zhang Y, Li M, Yang, B. J Power Sources, 2020, 450: 227629. doi:10.1016/j.jpowsour.2019.227629http://dx.doi.org/10.1016/j.jpowsour.2019.227629
Xu J, Ding C, Chen P, Tan L, Chen C, Fu J. Appl Phys Rev, 2020, 7(3): 031304. doi:10.1063/5.0008206http://dx.doi.org/10.1063/5.0008206
Whittingham M S. Science (New York, NY), 1976, 192(4244): 1126-1127. doi:10.1126/science.192.4244.1126http://dx.doi.org/10.1126/science.192.4244.1126
Brown N R, Makkapati T, Teeters D. Solid State Ionics, 2016, 288: 207-212. doi:10.1016/j.ssi.2016.02.011http://dx.doi.org/10.1016/j.ssi.2016.02.011
Karmakar A, Ghosh A. J Appl Phys, 2010, 107(10): 183. doi:10.1063/1.3428389http://dx.doi.org/10.1063/1.3428389
Li J, Zhang P, Chen L, Li G, Chen H, Jia C, Wu Y, Chen M, Zhao X, Song P. Compos Commun, 2020, 22: 100530. doi:10.1016/j.coco.2020.100530http://dx.doi.org/10.1016/j.coco.2020.100530
Liu Ziyang(刘梓洋), Li Yang(李杨), Liu Xingjiang(刘兴江), Xu Qiang(徐强). Journal of Materials Engineering(材料工程), 2021, 49(1): 1-10. doi:10.11868/j.issn.1001-4381.2020.000194http://dx.doi.org/10.11868/j.issn.1001-4381.2020.000194
Yang F J, Liu Q F, Wu X B, He Y Y, Shu X G, Huang J. RSC Adv, 2021, 11(56): 35687-35694. doi:10.1039/d1ra04553ahttp://dx.doi.org/10.1039/d1ra04553a
Wang C, Li R, Chen P, Fu Y, Ma X, Shen T, Zhou B, Chen K, Fu J, Bao X, Yan W, Yang Y. J Mater Chem A, 2021, 9(8): 4758-4769. doi:10.1039/d0ta10745jhttp://dx.doi.org/10.1039/d0ta10745j
Sarapas J M, Saijo K, Zhao Y, Takenaka M, Tew G N. Polym Adv Technol, 2016, 27(7): 946-954. doi:10.1002/pat.3753http://dx.doi.org/10.1002/pat.3753
Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z. Electrochim Acta, 2014, 133: 529-538. doi:10.1016/j.electacta.2014.04.099http://dx.doi.org/10.1016/j.electacta.2014.04.099
Shibuya Y, Tatara R, Jiang Y, Shao-Horn Y, Johnson J A. J Polym Sci, Part A: Polym Chem, 2019, 57(3): 448-455. doi:10.1002/pola.29242http://dx.doi.org/10.1002/pola.29242
Colak S, Tew G N. Langmuir, 2012, 28(1): 666-675. doi:10.1021/la203683uhttp://dx.doi.org/10.1021/la203683u
Maddikeri R R, Colak S, Gido S P, Tew G N. Biomacromolecules, 2011, 12(10): 3412-3417. doi:10.1021/bm2010142http://dx.doi.org/10.1021/bm2010142
Rankin D A, Lowe A B. Macromolecules, 2008, 41(3): 614-622. doi:10.1021/ma701952chttp://dx.doi.org/10.1021/ma701952c
Theodosopoulos G V, Zisis C, Charalambidis G, Nikolaou V, Coutsolelos A G, Pitsikalis M. Polymers, 2017, 9(4): 145. doi:10.3390/polym9040145http://dx.doi.org/10.3390/polym9040145
Sun H, Yu D M, Shi S, Yuan Q, Fujinami S, Sun X, Wang D, Russell T P. Macromolecules, 2019, 52(2): 592-600. doi:10.1021/acs.macromol.8b02265http://dx.doi.org/10.1021/acs.macromol.8b02265
Chen Can(陈灿), Yu Huitao(俞慧涛), Feng Yiyu(冯奕钰), Feng Wei(封伟). Acta Polymerica Sinica(高分子学报), 2021, 52(3): 272-280. doi:10.11777/j.issn1000-3304.2020.20229http://dx.doi.org/10.11777/j.issn1000-3304.2020.20229
Zheng Pengxuan(郑鹏轩), Wang Xiangwei(王向伟), Wang Dong(王栋), Yu Zhiwei(于志伟). Acta Polymerica Sinica(高分子学报), 2021, 52(1): 94-101. doi:10.11777/j.issn1000-3304.2020.20121http://dx.doi.org/10.11777/j.issn1000-3304.2020.20121
Rosenbach D, Moedl N, Hahn M, Petry J, Danzer M A, Thelakkat M. ACS Appl Energy Mater, 2019, 2(5): 3373-3388. doi:10.1021/acsaem.9b00211http://dx.doi.org/10.1021/acsaem.9b00211
Wei X Y, Shriver D F. Chem Mater, 1998, 10(9): 2307-2308. doi:10.1021/cm980170zhttp://dx.doi.org/10.1021/cm980170z
0
浏览量
161
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构