浏览全部资源
扫码关注微信
1.中国科学技术大学应用化学与工程学院 合肥 230026
2.中国科学院长春应用化学研究所 中科院生态环境高分子材料重点实验室 长春 130022
E-mail: xhwang@ciac.ac.cn
纸质出版日期:2022-11-20,
网络出版日期:2022-07-25,
收稿日期:2022-03-26,
录用日期:2022-04-19
移动端阅览
周庆海,贾凡,曹瀚等.二氧化碳与环氧化物的三元共聚反应动力学过程控制[J].高分子学报,2022,53(11):1365-1371.
Zhou Qing-hai,Jia Fan,Cao Han,et al.Kinetic Control of Carbon Dioxide and Epoxide Based Terpolymerization[J].ACTA POLYMERICA SINICA,2022,53(11):1365-1371.
周庆海,贾凡,曹瀚等.二氧化碳与环氧化物的三元共聚反应动力学过程控制[J].高分子学报,2022,53(11):1365-1371. DOI: 10.11777/j.issn1000-3304.2022.22097.
Zhou Qing-hai,Jia Fan,Cao Han,et al.Kinetic Control of Carbon Dioxide and Epoxide Based Terpolymerization[J].ACTA POLYMERICA SINICA,2022,53(11):1365-1371. DOI: 10.11777/j.issn1000-3304.2022.22097.
二氧化碳共聚物的分子结构调控有助于改善其物化性能,尤其是对深受低玻璃化温度困扰的二氧化碳(CO
2
)-环氧丙烷(PO)共聚物(PPC). 引入氧化环己烯(CHO)为第三单体进行三元共聚是提高PPC耐温性能的重要途径,但是三元共聚反应过程复杂,其动力学研究还处于探索阶段. 本文以均相的卟啉铝配合物为催化剂,利用Fineman-Ross方程和在线红外光谱研究CO
2
/PO/CHO的三元共聚反应. 实验发现较低共聚温度(60~70 ℃)下PO与CHO的单体竞聚率均小于1,因此通过调整单体投料比即可制备出无规共聚物,进而调整三元共聚物的热力学性能. 当共聚温度高于70 ℃时,CHO竞聚率大幅提高,更容易生成嵌段共聚物. 在线红外反应动力学研究表明,此催化体系70 ℃即使在极低黏度下依然可以快速引发聚合反应,但聚合温度提高后,环状碳酸酯生成量会大幅提升,可明显观察到聚合物的解拉链反应.
The physicochemical properties of carbon dioxide (CO
2
)-based copolymer can be enhanced by the regulation of the chain structure
especially for the CO
2
/propylene oxide (PO) copolymer (PPC)
which is plagued by low glass transition temperature. Introducing cyclohexene oxide (CHO) as the third monomer in terpolymerization is an important way to improve the thermal property of PPC. However
the reaction process of such terpolymerization is complicated and its kinetics study is still in its infancy. Herein
the kinetic behaviour of terpolymerization of PO/CHO/CO
2
was thoroughly investigated by virtue of the Fineman-Ross equation and
in situ
FTIR study
in the presence of aluminum porphyrin complex formed homogeneous catalysis. Results showed that the monomeric reactivity ratios of both PO and CHO were smaller than 1 under a low temperature of 60-70 ℃. Through regulating the monomer feed ratios
the random terpolymer could be facilely achieved with tunable thermal and mechanical properties. The reactivity ratio of CHO boosted significantly at high temperatures
which is favorable for the formation of block copolymers. The
in situ
FTIR analysis demonstrated that the catalytic system could quickly initiate the polymerization even at very low viscosity at 70 ℃. With the increase of polymerization temperature
the production of cyclic carbonate will be greatly increased
and the chain unzipping reaction of pol
ymer can be obviously observed.
二氧化碳共聚合动力学竞聚率卟啉铝
CO2 terpolymerizationKineticsReactivity ratioAluminum porphyrin
Zhu Y Q, Romain C, Williams C K. Nature, 2016, 540(7633): 354-362. doi:10.1038/nature21001http://dx.doi.org/10.1038/nature21001
Millican J M, Agarwal S. Macromolecules, 2021, 54(10): 4455-4469. doi:10.1021/acs.macromol.0c02814http://dx.doi.org/10.1021/acs.macromol.0c02814
Artz J, Müller T E, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W. Chem Rev, 2018, 118(2): 434-504. doi:10.1021/acs.chemrev.7b00435http://dx.doi.org/10.1021/acs.chemrev.7b00435
Inoue S, Koinuma H, Tsuruta T. Die Makromolekulare Chemie, 1969, 130(1): 210-220. doi:10.1002/macp.1969.021300112http://dx.doi.org/10.1002/macp.1969.021300112
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Li Y, Zhang Y Y, Hu L F, Zhang X H, Du B Y, Xu J T. Prog Polym Sci, 2018, 82: 120-157. doi:10.1016/j.progpolymsci.2018.02.001http://dx.doi.org/10.1016/j.progpolymsci.2018.02.001
Coates G W, Moore D R. Angew Chem Int Ed, 2004, 43(48): 6618-6639. doi:10.1002/anie.200460442http://dx.doi.org/10.1002/anie.200460442
Luinstra G A. Polym Rev, 2008, 48(1): 192-219. doi:10.1080/15583720701834240http://dx.doi.org/10.1080/15583720701834240
Qin Y S, Sheng X F, Liu S J, Ren G J, Wang X H, Wang F S. J CO2 Util, 2015, 11: 3-9. doi:10.1016/j.jcou.2014.10.003http://dx.doi.org/10.1016/j.jcou.2014.10.003
Wang Y, Darensbourg D J. Coord Chem Rev, 2018, 372: 85-100. doi:10.1016/j.ccr.2018.06.004http://dx.doi.org/10.1016/j.ccr.2018.06.004
Yang G W, Zhang Y Y, Wu G P. Acc Chem Res, 2021, 54(23): 4434-4448. doi:10.1021/acs.accounts.1c00620http://dx.doi.org/10.1021/acs.accounts.1c00620
Lv Xiaobing(吕小兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1166-1178. doi:10.11777/j.issn1000-3304.2016.16151http://dx.doi.org/10.11777/j.issn1000-3304.2016.16151
China National Center for Quality Supervision & Test of Plastic Products, GB/Tunder 19277-2003 (ISO 14855:1999) standards. doi:10.1108/cw.1999.21725bab.013http://dx.doi.org/10.1108/cw.1999.21725bab.013
Cao H, Wang X. SusMat, 2021, 1(1): 88-104. doi:10.1002/sus2.2http://dx.doi.org/10.1002/sus2.2
Ren W M, Zhang X, Liu Y, Li J F, Wang H, Lu X B. Macromolecules, 2010, 43(3): 1396-1402. doi:10.1021/ma902321ghttp://dx.doi.org/10.1021/ma902321g
Darensbourg D J, Poland R R, Strickland A L. J Polym Sci, Part A: Polym Chem, 2012, 50(1): 127-133. doi:10.1002/pola.24996http://dx.doi.org/10.1002/pola.24996
Seong J E, Na S J, Cyriac A, Kim B W, Lee B Y. Macromolecules, 2009, 43(2): 903-908. doi:10.1021/ma902162nhttp://dx.doi.org/10.1021/ma902162n
Reiter M, Vagin S, Kronast A, Jandl C, Rieger B. Chem Sci, 2017, 8(3): 1876-1882. doi:10.1039/c6sc04477hhttp://dx.doi.org/10.1039/c6sc04477h
Mo W, Zhuo C, Cao H, Liu S, Wang X, Wang F. Macromol Chem Phys, 2021, 2100403. doi:10.1002/macp.202100403http://dx.doi.org/10.1002/macp.202100403
Deng J, Ratanasak M, Sako Y, Tokuda H, Maeda C, Hasegawa J Y, Nozaki K, Ema T. Chem Sci, 2020, 11(22): 5669-5675. doi:10.1039/d0sc01609hhttp://dx.doi.org/10.1039/d0sc01609h
Cao Han(曹瀚), Gong Runan(巩如楠), Zhou Zhenzhen(周振震), Wang Xianhong(王献红), Wang Fosong(王佛松). Acta Polymerica Sinica(高分子学报), 2021, 52(8): 1006-1014. doi:10.11777/j.issn1000-3304.2021.21056http://dx.doi.org/10.11777/j.issn1000-3304.2021.21056
Cao H, Qin Y S, Zhuo C W, Wang X H, Wang F S. ACS Catal, 2019, 9(9): 8669-8676. doi:10.1021/acscatal.9b02741http://dx.doi.org/10.1021/acscatal.9b02741
Zhuo C W, Qin Y S, Wang X H, Wang F S. Chinese J Polym Sci, 2018, 36(2): 252-260. doi:10.1007/s10118-018-2093-zhttp://dx.doi.org/10.1007/s10118-018-2093-z
Beharaj A, McCaslin E Z, Blessing W A, Grinstaff M W. Nat Commun, 2019, 10(1): 5478-5484. doi:10.1038/s41467-019-13449-yhttp://dx.doi.org/10.1038/s41467-019-13449-y
Darensbourg D J, Yarbrough J C, Ortiz C, Fang C C. J Am Chem Soc, 2003, 125(25): 7586-7591. doi:10.1021/ja034863ehttp://dx.doi.org/10.1021/ja034863e
0
浏览量
161
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构