浏览全部资源
扫码关注微信
1.东华大学,纺织学院,上海 201620
2.东华大学,材料科学与工程学院,上海 201620
E-mail: ryzhang@dhu.edu.cn;
lifangliu@dhu.edu.cn
纸质出版日期:2022-12-20,
网络出版日期:2022-09-07,
收稿日期:2022-04-09,
录用日期:2022-05-07
移动端阅览
朱建华,张倩,张瑞云等.NiCo2O4修饰N掺杂交联碳纳米纤维电极的制备及其电化学性能研究[J].高分子学报,2022,53(12):1484-1492.
Zhu Jian-hua,Zhang Qian,Zhang Rui-yun,et al.Preparation and Electrochemical Performance of NiCo2O4 Decorated N-Doped Cross-linked Carbon Nanofiber Electrodes[J].ACTA POLYMERICA SINICA,2022,53(12):1484-1492.
朱建华,张倩,张瑞云等.NiCo2O4修饰N掺杂交联碳纳米纤维电极的制备及其电化学性能研究[J].高分子学报,2022,53(12):1484-1492. DOI: 10.11777/j.issn1000-3304.2022.22116.
Zhu Jian-hua,Zhang Qian,Zhang Rui-yun,et al.Preparation and Electrochemical Performance of NiCo2O4 Decorated N-Doped Cross-linked Carbon Nanofiber Electrodes[J].ACTA POLYMERICA SINICA,2022,53(12):1484-1492. DOI: 10.11777/j.issn1000-3304.2022.22116.
为有效改善碳纳米纤维导电性及柔性,以聚乙烯吡咯烷酮(PVP)为芯溶液,聚丙烯腈(PAN)和PVP为皮溶液,首先通过同轴静电纺丝技术制备偏心皮芯结构纳米纤维,然后在高温碳化过程中热塑性高聚物PVP发生熔融,在纤维间形成交联点,制得N掺杂的交联碳纳米纤维. 进一步,通过水热合成反应在碳纳米纤维表面原位生长NiCo
2
O
4
纳米针获得NiCo
2
O
4
修饰的N掺杂交联碳纳米纤维电极. 基于电极材料的结构优势以及碳纳米纤维与NiCo
2
O
4
纳米针的协同作用,所制备的NiCo
2
O
4
修饰N掺杂交联碳纳米纤维电极表现出优异的电化学行为,在0.5 A·g
-1
电流密度下,质量比电容高达1186.4 F·g
-1
(197.5 mA·h·g
-1
),10000次充放电循环后电容保持率达74.5%,且将电极材料组装成非对称超级电容器可成功为电子器件进行供电. 本文工作为柔性电极的开发提供了一种新的探究思路.
In order to effectively improve the conductivity and flexibility of carbon nanofibers
eccentric core-shell nanofibers were prepared
via
coaxial electrospinning technique with polyvinylpyrrolidone (PVP) as the core solution and polyacrylonitrile (PAN) and PVP as the shell solution. And then
N-doped cross-linked carbon nanofibers were prepared due to the melting of the thermoplastic polymer PVP during the high-temperature carbonization process
resulting in the formation of cross-linking points between adjacent nanofibers. NiCo
2
O
4
decorated N-doped cross-linked carbon nanofiber electrodes were obtained by growing NiCo
2
O
4
nanoneedles on the surface of carbon nanofibers
via
hydrothermal synthesis reaction. Due to the structural advantages of electrode materials and the synergistic effect of carbon nanofibers and NiCo
2
O
4
nanoneedles
the prepared NiCo
2
O
4
modified N-doped cross-linked carbon nanofiber electrode exhibits excellent electrochemical behavior (specific capacitance is 1186.4 F·g
-1
(197.5 mA·h·g
-1
) at the current density of 0.5 A·g
-1
capacitance retention of 74.5% after 1×10
4
charge-discharge cycles). The asymmetric supercapacitors assembled by prepared electrode materials powered electronics successfully
which provides a new research idea for the development of flexible electrodes.
2
碳纳米纤维双金属氧化物NiCo2O4柔性电极超级电容器
Carbon nanofiberBimetallic oxideNiCo2O4Flexible electrodeSupercapacitor
Zhang L L, Zhao X S. Chem Soc Rev, 2009, 38(9): 2520-2531. doi:10.1039/b813846jhttp://dx.doi.org/10.1039/b813846j
Ma W L, Cai Z H, Zhang Y, Wang Z Y, Xia L, Ma, S P, Li G H, Huang Y. Chinese J Polym Sci, 2020, 38: 491-505. doi:10.1007/s10118-020-2386-xhttp://dx.doi.org/10.1007/s10118-020-2386-x
Yun Y S, Cho S Y, Shim J, Kim B H, Chang S J, Baek S J, Huh Y S, Tak Y, Park Y W, Park S, Jin H J. Adv Mater, 2013, 25(14): 1993-1998. doi:10.1002/adma.201204692http://dx.doi.org/10.1002/adma.201204692
Altin Y, Celik Bedeloglu A. Int J Energy Res, 2021, 45(11): 16497-16510. doi:10.1002/er.6896http://dx.doi.org/10.1002/er.6896
Zhu J H, Zhang Q, Zhao Y J, Zhang R Y, Liu L F, Yu J Y. Chem Eng J, 2022: 134662. doi:10.1016/j.cej.2022.134662http://dx.doi.org/10.1016/j.cej.2022.134662
Zhu J H, Zhang Q, Chen H P, Zhang R Y, Liu L F, Yu J Y. ACS Appl Mater Interface, 2020, 12(39): 43634-43645. doi:10.1021/acsami.0c10933http://dx.doi.org/10.1021/acsami.0c10933
Yoo S H, Joh H I, Lee S H. Appl Surf Sci, 2017, 402: 456-462. doi:10.1016/j.apsusc.2017.01.154http://dx.doi.org/10.1016/j.apsusc.2017.01.154
Jung K H, Ferraris J P. Nanotechnology, 2016, 27(42): 425708. doi:10.1088/0957-4484/27/42/425708http://dx.doi.org/10.1088/0957-4484/27/42/425708
Koutcheiko S, Vorontsov V. J Biobased Mater Bioenergy, 2013, 7(6): 733-740. doi:10.1166/jbmb.2013.1375http://dx.doi.org/10.1166/jbmb.2013.1375
Breitenbach S, Duchoslav J, Mardare A I, Unterweger C, Stifter D, Hassel A W, Furst C. Nanomaterials, 2022, 12(4): 12040677. doi:10.3390/nano12040677http://dx.doi.org/10.3390/nano12040677
Liu X J, Zhou Y C, Zhou W J, Li L G, Huang S B, Chen S W. Nanoscale, 2015, 7(14): 6136-6142. doi:10.1039/c5nr00013khttp://dx.doi.org/10.1039/c5nr00013k
Wang B, Qiu J H, Feng H X, Sakai E, Komiyama T. Electrochim Acta, 2016, 190: 229-239. doi:10.1016/j.electacta.2016.01.038http://dx.doi.org/10.1016/j.electacta.2016.01.038
Zhi M J, Liu S H, Hong Z L, Wu N Q. RSC Adv, 2014, 4(82): 43619-43623. doi:10.1039/c4ra05512hhttp://dx.doi.org/10.1039/c4ra05512h
Si W J, Zhou J, Zhang S M, Li S, Xing W, Zhuo S P. Electrochim Acta, 2013, 107: 397-405. doi:10.1016/j.electacta.2013.06.065http://dx.doi.org/10.1016/j.electacta.2013.06.065
Wu H, Lu S Y, Yang B. Acc Mater Res, 2022, 3: 319-330. doi:10.1021/accountsmr.1c00194http://dx.doi.org/10.1021/accountsmr.1c00194
Song H Q, Yu J K, Tang Z Y, Yang B, Lu S Y. Adv Energy Mater, 2022, 12(14): 2102573. doi:10.1002/aenm.202102573http://dx.doi.org/10.1002/aenm.202102573
Zhu G Y, Ma L B, Lv H L, Hu Y, Chen T, Chen R P, Liang J, Wang X, Wang Y R, Yan C Z, Tie Z X, Jin Z, Liu J. Nanoscale, 2017, 9(3): 1237-1243. doi:10.1039/c6nr08139hhttp://dx.doi.org/10.1039/c6nr08139h
Niu H T, Zhang J, Xie Z L, Wang X G, Lin T. Carbon, 2011, 49(7): 2380-2388. doi:10.1016/j.carbon.2011.02.005http://dx.doi.org/10.1016/j.carbon.2011.02.005
Wang S X, Zou Y J, Xu F, Xiang C L, Peng H L, Zhang J, Sun L X. J Energy Storage, 2021, 41: 102862. doi:10.1016/j.est.2021.102862http://dx.doi.org/10.1016/j.est.2021.102862
Wang J X, Zhang Y Y, Ye J H, Wei H M, Hao J H, Mu J Y, Zhao S Q, Hussain S. RSC Adv, 2016, 6(74): 70077-70084. doi:10.1039/c6ra14242ghttp://dx.doi.org/10.1039/c6ra14242g
Holmberg S, Ghazinejad M, Cho E, George D, Pollack B, Perebikovsky A, Ragan R, Madou M. Electrochim Acta, 2018, 290: 639-648. doi:10.1016/j.electacta.2018.09.013http://dx.doi.org/10.1016/j.electacta.2018.09.013
Moayeri A, Ajji A. J Nanosci Nanotechnol, 2017, 17(3): 1820-1829. doi:10.1166/jnn.2017.12877http://dx.doi.org/10.1166/jnn.2017.12877
Ranjith K S, Kwak C H, Hwang J U, Ghoreishian S M, Raju G S R, Huh Y S, Im J S, Han Y K. Electrochim Acta, 2020, 332: 135494. doi:10.1016/j.electacta.2019.135494http://dx.doi.org/10.1016/j.electacta.2019.135494
Lei D Y, Li X D, Seo M K, Khil M S, Kim H Y, Kim B S. Polymer, 2017, 132: 31-40. doi:10.1016/j.polymer.2017.10.051http://dx.doi.org/10.1016/j.polymer.2017.10.051
Zhou G, Wu C, Wei Y H, Li C C, Lian Q, Cui C, Wei W F, Chen L B. Electrochim Acta, 2016, 222: 1878-1886. doi:10.1016/j.electacta.2016.12.001http://dx.doi.org/10.1016/j.electacta.2016.12.001
Song H, Wu M, Tang Z, Tse J S, Yang B, Lu S. Angew Chem Int Ed, 2021, 60(13): 7234-7244. doi:10.1002/anie.202017102http://dx.doi.org/10.1002/anie.202017102
Li Z S, Yang R R, Li B L, Yu M, Li D H, Wang H Q, Li Q Y. Electrochim Acta, 2017, 252: 180-191. doi:10.1016/j.electacta.2017.09.003http://dx.doi.org/10.1016/j.electacta.2017.09.003
Zhang G Q, Wu H B, Hoster H E, Chan-Park M B, Lou X W. Energy Environ Sci, 2012, 5(11): 9453-9456. doi:10.1039/c2ee22572ghttp://dx.doi.org/10.1039/c2ee22572g
Gao Huimin(高慧敏), Wang Qian(王千), Cao Zuolin(曹作林), Ren Shijie(任世杰). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1160-1168. doi:10.11777/j.issn1000-3304.2020.20067http://dx.doi.org/10.11777/j.issn1000-3304.2020.20067
0
浏览量
127
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构