浏览全部资源
扫码关注微信
1.上海中医药大学研究生院 上海 201203
2.上海健康医学院医疗器械学院 上海 201318
3.同济大学化学科学与工程学院 上海 200092
E-mail: liuhuajie@tongji.edu.cn;
zengdd@sumhs.edu.cn
纸质出版日期:2022-12-20,
网络出版日期:2022-09-19,
收稿日期:2022-04-11,
录用日期:2022-05-11
移动端阅览
刘思思,陈杰,林祥德等.壳聚糖/丝素纳米纤维载药多层膜的构建和抗菌应用[J].高分子学报,2022,53(12):1459-1465.
Liu Si-si,Chen Jie,Lin Xiang-de,et al.Construction and Antibacterial Application of Drug-loading Chitosan/Silk Nanofiber Multilayer Film[J].ACTA POLYMERICA SINICA,2022,53(12):1459-1465.
刘思思,陈杰,林祥德等.壳聚糖/丝素纳米纤维载药多层膜的构建和抗菌应用[J].高分子学报,2022,53(12):1459-1465. DOI: 10.11777/j.issn1000-3304.2022.22117.
Liu Si-si,Chen Jie,Lin Xiang-de,et al.Construction and Antibacterial Application of Drug-loading Chitosan/Silk Nanofiber Multilayer Film[J].ACTA POLYMERICA SINICA,2022,53(12):1459-1465. DOI: 10.11777/j.issn1000-3304.2022.22117.
构建抗菌表面涂层,是解决医疗器械表面因黏附生长细菌引发医源性感染的理想途径. 因此,本研究利用层层自组装技术,以静电相互作用为驱动力制备了壳聚糖/丝素纳米纤维(CHI/SNF)多层膜,通过紫外-分光光度计(UV-Vis)追踪该多层膜的组装过程,并使用扫描电镜(SEM)对其进行形貌分析. 然后,通过引入天然抗菌药物小檗碱(BBR)获得BBR-CHI/SNF多层膜. 初步探讨了该载药多层膜的体外药物释放行为和对金黄色葡萄球菌和绿脓杆菌的抗菌性能. 测试结果表明,多层膜的载药量能够通过调整膜的层数来控制. 多层膜具备抗细菌黏附及一定抑菌性能,负载BBR后,通过BBR与多层膜内CHI的协同作用,抗菌性能得到了提升,抑制了金黄色葡萄球菌和绿脓杆菌的生长,其抑制率分别达到了(59.62±4.28)%和(51.65±3.77)%. 总而言之,本研究构建了一种兼具抑菌和抗细菌黏附功能的载药多层膜,该多层膜制备简单,性能易于调控,基底灵活,因此在生物医用材料表面抗菌领域具有良好的应用前景.
Construction of antibacterial surface coating is an ideal way to solve iatrogenic infection caused by adhesion growth bacteria on the surface of medical devices. Therefore
in this study
chitosan/silk nanofiber (CHI/SNF) multilayer film is prepared by layer-by-layer self-assembly technology with electrostatic interaction as the driving force. The assembly process of this multilayer film is traced by an ultraviolet spectrophotometer (UV-Vis)
and its morphology is analyzed using scanning electron microscopy (SEM). Then
BBR-CHI/SNF multilayer film is obtained by introducing the natural antibacterial berberine (BBR). The
in vitro
drug release behavior and antibacterial activity against
S. aureus
and
P. aeruginosa
. The test results show that the drug loading of the multilayer film can be controlled by adjusting the number of layers. The multilayer film has anti-bacte
rial adhesion and certain antibacterial performance. After loading BBR
through the synergistic effect of BBR and CHI in multilayer
the antibacterial performance is improved and the growth of
S. aureus
and
P. aeruginosa
is inhibited
with the inhibition rates of (59.62±4.28)% and (51.65±3.77)%
respectively. In conclusion
we have successfully constructed a drug loading multilayer film with both antibacterial and anti-bacterial adhesion functions. This multilayer film is easily prepared and its properties are easy to control and flexible substrate. Therefore
it has good prospects for application in the field of antibacterial on the surface of biomedical materials.
层层自组装壳聚糖丝素纳米纤维小檗碱抗菌
Layer by layer self-assemblyChitosanSilk nanofiberBerberineAntibacterial property
Aduba D, An S S, Selders G S, Wang J, Hu Y. J Biomed Mater Res, Part A, 2016, 104(10): 2456-2465. doi:10.1002/jbm.a.35783http://dx.doi.org/10.1002/jbm.a.35783
Rui H, Chen F L, Yang Y W, Cheng X B, Gao Z, OuYang H W, Wu W, Mao T Q. J Biomed Mater Res, Part A, 2010, 80A(1): 85-93
Xu X H, Yang X, Zheng C G, Cui Y. Regen Med, 2020, 15(5): 1637-1645. doi:10.2217/rme-2019-0135http://dx.doi.org/10.2217/rme-2019-0135
Inoue H, Fujimoto K, Uyama Y, Ikada Y. J Biomed Mater Res, 1997, 35(2): 255-264. doi:10.1002/(sici)1097-4636(199705)35:2<255::aid-jbm13>3.0.co;2-ghttp://dx.doi.org/10.1002/(sici)1097-4636(199705)35:2<255::aid-jbm13>3.0.co;2-g
Narayan R J, Roeder R K. JOM, 2009, 61(9): 13. doi:10.1007/s11837-009-0125-4http://dx.doi.org/10.1007/s11837-009-0125-4
Arciola C R, An Y H, Campoccia D, Donati M E, Montanaro L. Int J Artif Organs, 2005, 28(11): 1091-1100. doi:10.1177/039139880502801106http://dx.doi.org/10.1177/039139880502801106
Hall-Stoodley L, Costerton J W, Stoodley P. Nat Rev Microbiol, 2004, 2(2): 95-108. doi:10.1038/nrmicro821http://dx.doi.org/10.1038/nrmicro821
Vickery K, Hu H, Jacombs A S, Bradshaw D A, Deva A K. Healthcare Infection, 2013, 18(2): 61-66. doi:10.1071/hi12059http://dx.doi.org/10.1071/hi12059
Simes M. Curr Med Chem, 2011, 18(14): 2129-2145
Yu Qian(于谦), Chen Hong(陈红). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 319-325. doi:10.11777/j.issn1000-3304.2020.20031http://dx.doi.org/10.11777/j.issn1000-3304.2020.20031
Zhao C W, Zhou L, Chiao M, Yang W T. Adv Colloid Interface Sci, 2020, 285: 102280. doi:10.1016/j.cis.2020.102280http://dx.doi.org/10.1016/j.cis.2020.102280
Liu T W, Yan S J, Zhou R T, Zhang X, Yang H W, Yan Q Y, Yang R, Luan S F. ACS Appl Mater Interfaces, 2020, 12(38): 42576-42585. doi:10.1021/acsami.0c13413http://dx.doi.org/10.1021/acsami.0c13413
Wang Xuebin(王学斌), Xue Yuan(薛源), Zhou Yaowu(周耀武), Chen Shengyi(陈声毅), Bao Chunyan(包春燕), Zhu Linyong(朱麟勇). Acta Polymerica Sinica(高分子学报), 2022, 53(2): 133-144
Zhou C, Zhou J T, Sheng C J, Pranantyo D, Pan Y, Huang X J. Chinese J Polym Sci, 2021, 39(4): 425-440. doi:10.1007/s10118-021-2513-3http://dx.doi.org/10.1007/s10118-021-2513-3
Sarode A, Annapragada A, Guo J, Mitragotri S. Biomaterials, 2020, 242: 119929. doi:10.1016/j.biomaterials.2020.119929http://dx.doi.org/10.1016/j.biomaterials.2020.119929
Cho Y, Lee J B, Hong J. Sci Rep, 2014, 4: 4078. doi:10.1038/srep04078http://dx.doi.org/10.1038/srep04078
Poojari R, Kini S, Srivastava R, Panda D. Colloids Surf, B, 2016, 143: 131-138. doi:10.1016/j.colsurfb.2016.03.024http://dx.doi.org/10.1016/j.colsurfb.2016.03.024
Decher G. Science, 1997, 277(5330): 1232-1237. doi:10.1126/science.277.5330.1232http://dx.doi.org/10.1126/science.277.5330.1232
Iler R K. J Colloid Interface Sci, 1966, 21(6): 569-594. doi:10.1016/0095-8522(66)90018-3http://dx.doi.org/10.1016/0095-8522(66)90018-3
Shende P, Patil A, Prabhakar B. J Drug Delivery Sci Technol, 2020, 56: 101519. doi:10.1016/j.jddst.2020.101519http://dx.doi.org/10.1016/j.jddst.2020.101519
Zhang Y X, Ma J Z, Xu Q N. Colloids Surf, B, 2019, 178: 439-444. doi:10.1016/j.colsurfb.2019.03.017http://dx.doi.org/10.1016/j.colsurfb.2019.03.017
Howling G I, Dettmar P W, Goddard P A, Hampson F C, Dornish M, Wood E J. Biomaterials, 2001, 22(22): 2959-2966. doi:10.1016/s0142-9612(01)00042-4http://dx.doi.org/10.1016/s0142-9612(01)00042-4
Tsai G J, Hwang S P. Fish Sci, 2004, 70: 675-681. doi:10.1111/j.1444-2906.2004.00856.xhttp://dx.doi.org/10.1111/j.1444-2906.2004.00856.x
Younes I, Rinaudo M. Mar Drugs, 2015, 13(3): 1133-1174. doi:10.3390/md13031133http://dx.doi.org/10.3390/md13031133
Li J H, Zhuang S L. Eur Polym J, 2020, 138(1): 109984. doi:10.1016/j.eurpolymj.2020.109984http://dx.doi.org/10.1016/j.eurpolymj.2020.109984
Chung Y C, Chen C Y. Bioresour Technol, 2008, 99(8): 2806-2814. doi:10.1016/j.biortech.2007.06.044http://dx.doi.org/10.1016/j.biortech.2007.06.044
Andres Y, Giraud L, Gerente C, Cloirec P L. Environ Technol, 2007, 28(12): 1357-1363. doi:10.1080/09593332808618893http://dx.doi.org/10.1080/09593332808618893
Ling S J, Qin Z, Li C M, Huang W W, Kaplan D L, Buehler M J. Nat Commun, 2017, 8(1): 1387. doi:10.1038/s41467-017-00613-5http://dx.doi.org/10.1038/s41467-017-00613-5
Bai S M, Zhang X L, Lu Q, Sheng W Q, Liu L J, Dong B J, Kaplan D L, Zhu H S. Biomacromolecules, 2014, 15(8): 3044-3051. doi:10.1021/bm500662zhttp://dx.doi.org/10.1021/bm500662z
Zhang F, You X R, Dou H, Liu Z, Zuo B Q, Zhang X G. ACS Appl Mater Interfaces, 2015, 7(5): 3352. doi:10.1021/am508319hhttp://dx.doi.org/10.1021/am508319h
Farasatkia A, Kharaziha M, Ashrafizadeh F, Salehi S. Mater Sci Eng: C, 2021, 120: 111744. doi:10.1016/j.msec.2020.111744http://dx.doi.org/10.1016/j.msec.2020.111744
Liu X T, Zhang W L, Lin Z F, Meng Z H, Shi C Y, Xu Z J, Yang L K, Liu X Y. Small Methods, 2021, 5: 2000926. doi:10.1002/smtd.202000926http://dx.doi.org/10.1002/smtd.202000926
0
浏览量
136
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构