浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
E-mail: 16110440025@fudan.edu.cn;
guosong@fudan.edu.cn
纸质出版日期:2022-12-20,
网络出版日期:2022-09-09,
收稿日期:2022-04-18,
录用日期:2022-05-23
移动端阅览
曾雅,刘荣营,李龙等.唾液酸切除动力学对糖肽纤维形貌演变的影响[J].高分子学报,2022,53(12):1466-1474.
Zeng Ya,Liu Rong-ying,Li Long,et al.Effects of Kinetics of Sialic Acid-removal on the Evolution of Glycopeptide Fibril Morphology[J].ACTA POLYMERICA SINICA,2022,53(12):1466-1474.
曾雅,刘荣营,李龙等.唾液酸切除动力学对糖肽纤维形貌演变的影响[J].高分子学报,2022,53(12):1466-1474. DOI: 10.11777/j.issn1000-3304.2022.22129.
Zeng Ya,Liu Rong-ying,Li Long,et al.Effects of Kinetics of Sialic Acid-removal on the Evolution of Glycopeptide Fibril Morphology[J].ACTA POLYMERICA SINICA,2022,53(12):1466-1474. DOI: 10.11777/j.issn1000-3304.2022.22129.
唾液酸酶介导的脱唾液酸过程在细胞表面唾液酸的动态调节中起着重要作用,并参与多种生理和病理过程. 对于这一重要过程的体外模拟和深入研究一方面将有利于深入理解许多唾液酸相关的生理过程,另一方面也为构建酶参与的仿生材料打下基础. 本文中我们利用表面高“表达”唾液酸的糖肽纳米纤维作为起始结构,然后通过在溶液中加入唾液酸酶来重现唾液酸酶介导的脱唾液酸过程. 结果显示加入的唾液酸酶确实导致了纤维表面唾液酸的切除并引发了糖肽纤维的形貌转变. 还通过改变唾液酸酶浓度来调控唾液酸切除动力学,结果显示唾液酸的切除速率决定了糖肽纤维的形貌演化路径,低的唾液酸切除速率导致初始的双螺旋糖肽纤维逐步演化为胶束,而高的唾液酸切除速率则使得初始的双螺旋糖肽纤维最终演化为扭曲的纳米带. 此外,也证实了这一策略在细胞培养方面的应用.
The sialidase-mediated desia
lylation plays an important role in the dynamic regulation of sialic acid (SA) on the cell surface and is involved in a variety of physiological and pathological processes. For one thing
the
in vitro
simulation and in-depth study of this important process will help us deeply understand many physiological processes related to SA
and for another
it will also lay a foundation for the construction of biomimetic materials involving enzymes. Here
we used glycopeptide nanofibers with a large exposure of SA on the surface as the starting structure and then replicated the sialidase-mediated desialylation process by adding sialidase to the solution. The results showed that the added sialidase indeed led to the cleavage of SA on the fiber surface and thus triggered the morphological transformation of glycopeptide fibers. We also regulated the kinetics of SA removal by changing the sialidase concentration
and the results showed that the rate of removal of sialic acid determined the evolution path of glycopeptide fibers. Slow removal of SA led to the gradual evolution of the initial double-helix glycopeptide fibers into micelles
and the high rate of SA excision allowed the initial double-helical glycopeptide fibers to eventually evolve into twisted nanoribbons. In addition
the application of this strategy in cell culture has also been demonstrated.
2
糖肽自组装唾液酸酶形貌转变
GlycopeptidesSelf-assemblySialidaseMorphology transformation
Byrne B, Donohoe G G, O'Kennedy R. Drug Discov Today, 2007, 12(7): 319-326. doi:10.1016/j.drudis.2007.02.010http://dx.doi.org/10.1016/j.drudis.2007.02.010
Severi E, Hood D W, Thomas G H. Microbiology, 2007, 153(9): 2817-2822. doi:10.1099/mic.0.2007/009480-0http://dx.doi.org/10.1099/mic.0.2007/009480-0
Du J, Meledeo M A, Wang Z, Khanna H S, Paruchuri V D P, Yarema K J. Glycobiology, 2009, 19(12): 1382-1401. doi:10.1093/glycob/cwp115http://dx.doi.org/10.1093/glycob/cwp115
Cummings R D, Smith D F. Bioessays, 1992, 14(12): 849-856. doi:10.1002/bies.950141210http://dx.doi.org/10.1002/bies.950141210
Büll C, Stoel M A, den Brok M H, Adema G J. Cancer Res, 2014, 74(12): 3199-3204. doi:10.1158/0008-5472.can-14-0728http://dx.doi.org/10.1158/0008-5472.can-14-0728
Lehmann F, Tiralongo E, Tiralongo J. Cell Mol Life Sci, 2006, 63(12): 1331-1354. doi:10.1007/s00018-005-5589-yhttp://dx.doi.org/10.1007/s00018-005-5589-y
Flynn R A, Pedram K, Malaker S A, Batista P J, Smith B A H, Johnson A G, George B M, Majzoub K, Villalta P W, Carette J E, Bertozzi C R. Cell, 2021, 184(12): 3109-3124.e3122. doi:10.1016/j.cell.2021.04.023http://dx.doi.org/10.1016/j.cell.2021.04.023
Bertozzi C R, Kiessling L L. Science, 2001, 291(5512): 2357-2364. doi:10.1126/science.1059820http://dx.doi.org/10.1126/science.1059820
Wei M, Wang P G. Chapter two-desialylation in physiological and pathological processes: new target for diagnostic and therapeutic development. In: Zhang L, ed. Prog Mol Biol Transl Sci. San Diego: Academic Press, 2019. 25-57. doi:10.1016/bs.pmbts.2018.12.001http://dx.doi.org/10.1016/bs.pmbts.2018.12.001
Hinek A, Pshezhetsky A V, von Itzstein M, Starcher B. J Biol Chem, 2006, 281(6): 3698-3710. doi:10.1074/jbc.m508736200http://dx.doi.org/10.1074/jbc.m508736200
Annunziata I, Patterson A, Helton D, Hu H, Moshiach S, Gomero E, Nixon R, d'Azzo A. Nat Commun, 2013, 4(1): 2734. doi:10.1038/ncomms3734http://dx.doi.org/10.1038/ncomms3734
Gadhoum S Z, Sackstein R. Nat Chem Biol, 2008, 4(12): 751-757. doi:10.1038/nchembio.116http://dx.doi.org/10.1038/nchembio.116
Li J, van der Wal D E, Zhu G, Xu M, Yougbare I, Ma L, Vadasz B, Carrim N, Grozovsky R, Ruan M, Zhu L, Zeng Q, Tao L, Zhai Z m, Peng J, Hou M, Leytin V, Freedman J, Hoffmeister K M, Ni H. Nat Commun, 2015, 6(1): 7737. doi:10.1038/ncomms8737http://dx.doi.org/10.1038/ncomms8737
Miyagi T, Takahashi K, Moriya S, Hata K, Yamamoto K, Wada T, Yamaguchi K, Shiozaki K. Altered expression of sialidases in human cancer. In: Sudhakaran P R, Surolia A, eds. Biochemical Roles of Eukaryotic Cell Surface Macromoleculesed. New York, NY: Springer New York, 2012. 257-267. doi:10.1007/978-1-4614-3381-1_17http://dx.doi.org/10.1007/978-1-4614-3381-1_17
Xia G X, Wu Y M, Bi Y F, Chen K, Zhang W W, Liu S Q, Zhang W J, Liu R H. Chinese J Polym Sci, 2021, 39(2): 133-146. doi:10.1007/s10118-021-2506-2http://dx.doi.org/10.1007/s10118-021-2506-2
Wang Yin(王寅), Wang Haibo(王海波), Han Haijie(韩海杰), Jia Fan(贾凡), Jin Qiao(金桥), Ji Jian(计剑). Acta Polymerica Sinica(高分子学报), 2018, (8): 1089-1096. doi:10.11777/j.issn1000-3304.2018.18035http://dx.doi.org/10.11777/j.issn1000-3304.2018.18035
Feng Y, Li L, Du Q, Gou L, Zhang L, Chai Y, Zhang R, Shi T, Chen G. CCS Chem, 2022, 4(7): 2228-2238. doi:10.31635/ccschem.021.202101168http://dx.doi.org/10.31635/ccschem.021.202101168
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen L K E A, Wilson D A. Chem Rev, 2016, 116(4): 2023-2078. doi:10.1021/acs.chemrev.5b00344http://dx.doi.org/10.1021/acs.chemrev.5b00344
Tai W, Mo R, Di J, Subramanian V, Gu X, Gu Z. Biomacromolecules, 2014, 15(10): 3495-3502. doi:10.1021/bm500364ahttp://dx.doi.org/10.1021/bm500364a
Qi J, Yan Y, Cheng B, Deng L, Shao Z, Sun Z, Li X. ACS Appl Mater Interfaces, 2018, 10(7): 6180-6189. doi:10.1021/acsami.7b18535http://dx.doi.org/10.1021/acsami.7b18535
Wang H, Shi J, Feng Z, Zhou R, Wang S, Rodal A A, Xu B. Angew Chem Int Ed, 2017, 56(51): 16297-16301. doi:10.1002/anie.201710269http://dx.doi.org/10.1002/anie.201710269
Hirst A R, Roy S, Arora M, Das A K, Hodson N, Murray P, Marshall S, Javid N, Sefcik J, Boekhoven J, van Esch J H, Santabarbara S, Hunt N T, Ulijn R V. Nat Chem, 2010, 2(12): 1089-1094. doi:10.1038/nchem.861http://dx.doi.org/10.1038/nchem.861
Liu R, Zhang R, Li L, Kochovski Z, Yao L, Nieh M P, Lu Y, Shi T, Chen G. J Am Chem Soc, 2021, 143(17): 6622-6633. doi:10.1021/jacs.1c01951http://dx.doi.org/10.1021/jacs.1c01951
Kwon S J, Na D H, Kwak J H, Douaisi M, Zhang F, Park E J, Park J H, Youn H, Song C S, Kane R S, Dordick J S, Lee K B, Linhardt R J. Nat Nanotechnol, 2017, 12(1): 48-54. doi:10.1038/nnano.2016.181http://dx.doi.org/10.1038/nnano.2016.181
Moog K E, Barz M, Bartneck M, Beceren-Braun F, Mohr N, Wu Z, Braun L, Dernedde J, Liehn E A, Tacke F, Lammers T, Kunz H, Zentel R. Angew Chem Int Ed, 2017, 56(5): 1416-1421. doi:10.1002/anie.201610395http://dx.doi.org/10.1002/anie.201610395
Jeon J, Kang L J, Lee K M, Cho C, Song E K, Kim W, Park T J, Yang S. J Cell Mol Med, 2018, 22(1): 57-66. doi:10.1111/jcmm.13292http://dx.doi.org/10.1111/jcmm.13292
Schnaider L, Brahmachari S, Schmidt N W, Mensa B, Shaham-Niv S, Bychenko D, Adler-Abramovich L, Shimon L J W, Kolusheva S, DeGrado W F, Gazit E. Nat Commun, 2017, 8(1): 1365. doi:10.1038/s41467-017-01447-xhttp://dx.doi.org/10.1038/s41467-017-01447-x
Mondal S, Adler-Abramovich L, Lampel A, Bram Y, Lipstman S, Gazit E. Nat Commun, 2015, 6(1): 8615. doi:10.1038/ncomms9615http://dx.doi.org/10.1038/ncomms9615
Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G. ACS Nano, 2010, 4(2): 610-614. doi:10.1021/nn901327vhttp://dx.doi.org/10.1021/nn901327v
Reches M, Gazit E. Science, 2003, 300(5619): 625-627. doi:10.1126/science.1082387http://dx.doi.org/10.1126/science.1082387
Roytman R, Adler-Abramovich L, Kumar K S A, Kuan T C, Lin C C, Gazit E, Brik A. Org Biomol Chem, 2011, 9(16): 5755-5761. doi:10.1039/c1ob05071khttp://dx.doi.org/10.1039/c1ob05071k
Ung P, Winkler D A. J Med Chem, 2011, 54(5): 1111-1125. doi:10.1021/jm1012984http://dx.doi.org/10.1021/jm1012984
Wong A S Y, Pogodaev A A, Vialshin I N, Helwig B, Huck W T S. J Am Chem Soc, 2017, 139(24): 8146-8151. doi:10.1021/jacs.7b00632http://dx.doi.org/10.1021/jacs.7b00632
Pappas C G, Sasselli I R, Ulijn R V. Angew Chem Int Ed, 2015, 54(28): 8119-8123. doi:10.1002/anie.201500867http://dx.doi.org/10.1002/anie.201500867
Leenders C M A, Albertazzi L, Mes T, Koenigs M M E, Palmans A R A, Meijer E W. Chem Commun, 2013, 49(19): 1963-1965. doi:10.1039/c3cc38949ahttp://dx.doi.org/10.1039/c3cc38949a
Adzhubei A A, Sternberg M J E, Makarov A A. J Mol Biol, 2013, 425(12): 2100-2132. doi:10.1016/j.jmb.2013.03.018http://dx.doi.org/10.1016/j.jmb.2013.03.018
Sahoo H, Roccatano D, Hennig A, Nau W M. J Am Chem Soc, 2007, 129(31): 9762-9772. doi:10.1021/ja072178shttp://dx.doi.org/10.1021/ja072178s
Basavalingappa V, Bera S, Xue B, O'Donnell J, Guerin S, Cazade P A, Yuan H, Haq E u, Silien C, Tao K, Shimon L J W, Tofail S A M, Thompson D, Kolusheva S, Yang R, Cao Y, Gazit E. ACS Nano, 2020, 14(6): 7025-7037. doi:10.1021/acsnano.0c01654http://dx.doi.org/10.1021/acsnano.0c01654
Teale F W J, Weber G. Biochem J, 1957, 65(3): 476-482. doi:10.1042/bj0650476http://dx.doi.org/10.1042/bj0650476
Marshall K E, Morris K L, Charlton D, O'Reilly N, Lewis L, Walden H, Serpell L C. Biochemistry, 2011, 50(12): 2061-2071. doi:10.1021/bi101936chttp://dx.doi.org/10.1021/bi101936c
Handelman A, Natan A, Rosenman G. J Pept Sci, 2014, 20(7): 487-493. doi:10.1002/psc.2661http://dx.doi.org/10.1002/psc.2661
Creasey R C G, Louzao I, Arnon Z A, Marco P, Adler-Abramovich L, Roberts C J, Gazit E, Tendler S J B. Soft Matter, 2016, 12(47): 9451-9457. doi:10.1039/c6sm01770chttp://dx.doi.org/10.1039/c6sm01770c
O'Neill A S G, van den Berg T K, Mullen G E D. Immunology, 2013, 138(3): 198-207. doi:10.1111/imm.12042http://dx.doi.org/10.1111/imm.12042
Yan H, Kamiya T, Suabjakyong P, Tsuji N M. Front Immunol, 2015, 6: 408. doi:10.3389/fimmu.2015.00408http://dx.doi.org/10.3389/fimmu.2015.00408
Song Y J, Huang Y Q, Zhou F, Ding J S, Zhou W H. Chin Chem Lett, 2022, 33(2): 597-612. doi:10.1016/j.cclet.2021.08.090http://dx.doi.org/10.1016/j.cclet.2021.08.090
Lee D W, Kim T, Park I S, Huang Z, Lee M. J Am Chem Soc, 2012, 134(36): 14722-14725. doi:10.1021/ja306802mhttp://dx.doi.org/10.1021/ja306802m
Gestwicki J E, Cairo C W, Strong L E, Oetjen K A, Kiessling L L. J Am Chem Soc, 2002, 124(50): 14922-14933. doi:10.1021/ja027184xhttp://dx.doi.org/10.1021/ja027184x
Wang Youzhi(王友志), Gao Jie(高洁), Yang Zhimou(杨志谋). Acta Polymerica Sinica(高分子学报), 2018, (1): 9-20. doi:10.11777/j.issn1000-3304.2018.17199http://dx.doi.org/10.11777/j.issn1000-3304.2018.17199
Li Yijing(李怡静), Gong Xuefeng(龚雪峰), Wang Dong(王冬), Yang Zhou(杨洲), Cao Hui(曹晖), Wang Lei(王磊). Acta Polymerica Sinica(高分子学报), 2022, 53(5): 445-456. doi:10.11777/j.issn1000-3304.2021.21369http://dx.doi.org/10.11777/j.issn1000-3304.2021.21369
Jayawarna V, Ali M, Jowitt T A, Miller A F, Saiani A, Gough J E, Ulijn R V. Adv Mater, 2006, 18(5): 611-614. doi:10.1002/adma.200501522http://dx.doi.org/10.1002/adma.200501522
Shen Z, Guo Z, Tan T, Hu J, Zhang Y. ACS Biomater Sci Eng, 2020, 6(7): 3957-3966. doi:10.1021/acsbiomaterials.0c00340http://dx.doi.org/10.1021/acsbiomaterials.0c00340
0
浏览量
117
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构