浏览全部资源
扫码关注微信
郑州大学力学与安全工程学院 微纳成型技术国家级国际联合研究中心 郑州 450001
E-mail: 202012252014767@gs.zzu.edu.cn
纸质出版日期:2022-12-20,
网络出版日期:2022-08-31,
收稿日期:2022-05-05,
录用日期:2022-06-14
移动端阅览
刘艳萍,郑剑亮,王旭等.同轴静电纺丝制备聚乙二醇和聚左旋乳酸核壳纤维及其热管理性能分析[J].高分子学报,2022,53(12):1493-1503.
Liu Yan-ping,Zheng Jian-liang,Wang Xu,et al.Preparation of Poly(ethylenve glycol) and Poly(L-lactic acid) Core-shell Fibers by Coaxial Electrospinning and Analysis of the Thermal Management Properties[J].ACTA POLYMERICA SINICA,2022,53(12):1493-1503.
刘艳萍,郑剑亮,王旭等.同轴静电纺丝制备聚乙二醇和聚左旋乳酸核壳纤维及其热管理性能分析[J].高分子学报,2022,53(12):1493-1503. DOI: 10.11777/j.issn1000-3304.2022.22168.
Liu Yan-ping,Zheng Jian-liang,Wang Xu,et al.Preparation of Poly(ethylenve glycol) and Poly(L-lactic acid) Core-shell Fibers by Coaxial Electrospinning and Analysis of the Thermal Management Properties[J].ACTA POLYMERICA SINICA,2022,53(12):1493-1503. DOI: 10.11777/j.issn1000-3304.2022.22168.
采用可降解的高分子材料聚左旋乳酸(PLLA)对潜热性能优良的聚乙二醇(PEG)相变材料进行包覆,利用同轴静电纺丝手段制备了具有良好热管理性能的核壳纤维. 基于透射电子显微镜(TEM)证实了核壳结构,通过扫描电镜(SEM)、示差扫描量热仪(DSC)、热重分析(TGA)、升降温实验、广角X射线衍射(WAXD)和单轴拉伸等实验分析了相变材料的表面形貌、储热性能、热稳定性和力学性能,结果表明:PLLA/PEG同轴纤维的包覆性能良好,最大包覆率可达48.8 wt%,结晶度达到56.3%. 由于PEG固-液相转变以及PLLA玻璃化转变带来的热容变化的共同作用,该核壳结构的相变材料具有良好的热管理性能,为拓宽高分子基相变材料的应用领域提供了参考.
The severe energy crisis has become a huge obstacle to the industrialization process and economic development. In addition to developing new energy
improving the utilization efficiency of existing energy is one of the effective means to solve energy problems. In order to solve the contradiction between serious waste and discontinuous supply of thermal energy
the management and storage technology of thermal energy have been developed rapidly in recent years. Based on the advantages of high latent heat
suitable phase transition temperature
and thermal stability
poly(ethylene glycol) (PEG) is one of the most widely used materials of solid-liquid phase change. However
the polymer-based PCM undergoes solid-liquid phase changes between crystalline and molten states during use
which is prone to leakage and failure. Coaxial electrospinning utilizes a polymer with high melting point to encapsulate phase change material (PCM) as a core layer
which is an effective means to reduce the leakage of PCM. Biodegradable poly(L-lactic acid) (PLLA) is an environment-friendly material with excellent mechanical properties
which becomes an alternative to petroleum-based polymers. The glass transition temperature of PLLA is close to the melting point of PEG Although there is no obvious latent heat during the glass transition of PLLA
the thermal conductivity of PCM might be influenced by the change of heat capacity. Therefore
the thermal property of PCM can be regulated by coupling of heat latent of phase regulation and glass transition. More importantly
both PLLA and PEG have good biocompatibility
which may broaden the application in the field of biomedical application. In this study
core-shell fibers with good thermal management properties were prepared by coaxial electrospinning
in which PEG and PLLA are used as the core and shell layers
respectively. The core-shell structure is tested by transmission electron microscopy (TEM)
and analyzed by differential scanning calorimetry (DSC)
thermogravimetric analysis (TGA)
wide-angle X-ray diffraction (WAXD). The thermal storage properties
thermal stability and mechanical properties of phase change materials are investigated. The core layer of PEG is well coated by PLLA and the maximum coating ratio reaches 48.8 wt%. The biggest crystallinity of PEG reaches 56.3%. Due to the latent heat capacity of solid-liquid phase transition of PEG and the change of thermal capacity of PLLA
the phase change material with the core-shell structure has good thermal management performance
which provides an opportunity for broadening the application field of polymer-based phase change materials.
2
同轴静电纺丝相变材料热管理性能保温效率
Coaxial electrospinningPhase change materialThermal management performanceThermal insulation efficiency
Cuce E, Harjunowibowo D, Cuce P M. Renew Sust Energ Rev, 2016, 64: 34-59. doi:10.1016/j.rser.2016.05.077http://dx.doi.org/10.1016/j.rser.2016.05.077
Yataganbaba A, Ozkahraman B, Kurtbas I. Appl Energy, 2017, 185: 720-731. doi:10.1016/j.apenergy.2016.10.107http://dx.doi.org/10.1016/j.apenergy.2016.10.107
Alehosseini E, Jafari S M. Adv Colloid Interface Sci, 2020, 283: 102226. doi:10.1016/j.cis.2020.102226http://dx.doi.org/10.1016/j.cis.2020.102226
Pereira da Cunha J, Eames P. Appl Energy, 2016, 177: 227-238. doi:10.1016/j.apenergy.2016.05.097http://dx.doi.org/10.1016/j.apenergy.2016.05.097
Anisur M R, Mahfuz M H, Kibria M A, Saidur R, Metselaar I H S C, Mahlia T M I. Renew Sust Energ Rev, 2013, 18: 23-30. doi:10.1016/j.rser.2012.10.014http://dx.doi.org/10.1016/j.rser.2012.10.014
Yuan K, Shi J, Aftab W, Qin M, Usman A, Zhou F, Lv Y, Gao S, Zou R. Adv Funct Mater, 2019, 30: 1904228. doi:10.1002/adfm.201904228http://dx.doi.org/10.1002/adfm.201904228
Baetens R, Jelle B P, Gustavsen A. Energy Build, 2010, 42: 1361-1368. doi:10.1016/j.enbuild.2010.03.026http://dx.doi.org/10.1016/j.enbuild.2010.03.026
Lu Y, Xiao X, Liu Y, Wang J, Qi S, Huan C, Liu H, Zhu Y, Xu G. J Alloys Compd, 2020, 812: 152144. doi:10.1016/j.jallcom.2019.152144http://dx.doi.org/10.1016/j.jallcom.2019.152144
Fang Qiang(方强), Shan Xiameng(单夏梦), Liu Ling(刘玲), Hu Xueyan(胡雪妍), Wang Jin(王锦). Acta Polymerica Sinica(高分子学报), 2022, 53(2): 165-173
Sharma A, Tyagi V V, Chen C R, Buddhi D. Renew Sust Energ Rev, 2009, 13: 318-345. doi:10.1016/j.rser.2007.10.005http://dx.doi.org/10.1016/j.rser.2007.10.005
Sharma R K, Ganesan P, Tyagi V V, Metselaar H S C, Sandaran S C. Energy Convers Manage, 2015, 95: 193-228. doi:10.1016/j.enconman.2015.01.084http://dx.doi.org/10.1016/j.enconman.2015.01.084
Deng Zhuo(邓卓), Lu Yingxian(卢英先). China Plastic(中国塑料), 1995, 9(4): 17-20
Umair M M, Zhang Y, Iqbal K, Zhang S, Tang B. Appl Energy, 2019, 235: 846-873. doi:10.1016/j.apenergy.2018.11.017http://dx.doi.org/10.1016/j.apenergy.2018.11.017
Liu Z M, Zhang Y Y, Hu K, Xiao Y, Wang J L, Zhou C L, Lei J X. Energy Build, 2016, 127: 327-336. doi:10.1016/j.enbuild.2016.06.009http://dx.doi.org/10.1016/j.enbuild.2016.06.009
Sun Z, Sun K, Zhang H, Liu H, Wu D, Wang X. Sol Energy Mater Sol Cells, 2021, 225: 111069. doi:10.1016/j.solmat.2021.111069http://dx.doi.org/10.1016/j.solmat.2021.111069
Lu Yuan(陆源), Xun Changmeng(郇昌梦), Qi Shuai(齐帅), Zhan Yongjun(詹勇军), Liu Hongsha(刘红莎), Xiao Xiudi(肖秀娣), Xu Gang(徐刚). Adv New Renewable En(新能源进展), 2018, 6: 439-447. doi:10.3969/j.issn.2095-560X.2018.05.014http://dx.doi.org/10.3969/j.issn.2095-560X.2018.05.014
Cai Yibing(蔡以兵), Sun Guiyan(孙桂岩), Liu Mengmeng(刘盟盟), Wang Jinpeng(王锦鹏), Wei Qufu(魏取福), Liu Wei(刘伟). Polym Bull(高分子通报), 2015, (2): 18-25
McCann J T, Marquez M, Xia Y. Nano Lett, 2006, 6: 2868-2872. doi:10.1021/nl0620839http://dx.doi.org/10.1021/nl0620839
Babapoor A, Karimi G, Golestaneh S I, Mezjin M A. Appl Therm Eng, 2017, 118: 398-407. doi:10.1016/j.applthermaleng.2017.02.119http://dx.doi.org/10.1016/j.applthermaleng.2017.02.119
Qiao Y, Yang F, Lu Y, Liu P, Li Y, Men Y. Macromolecules, 2018, 51: 8298-8305. doi:10.1021/acs.macromol.8b01795http://dx.doi.org/10.1021/acs.macromol.8b01795
Sun Shaoxing(孙少兴), Xie Rui(谢锐), Ju Xiaojie(巨晓洁), Wang Wei(汪伟), Liu Zhuang(刘壮), Chu Liangyin(褚良银). New Chem Mater(化工新型材料), 2016, 44(8): 59-61
Van Do C, Nguyen T T T, Park J S. Sol Energy Mater Sol Cells, 2012, 104: 131-139. doi:10.1016/j.solmat.2012.04.029http://dx.doi.org/10.1016/j.solmat.2012.04.029
Xiang S, Zhou D D, Feng L D, Bian X C, Li G, Chen X S, Wang T C. Chinese J Polym Sci, 2018, 37: 258-267. doi:10.1007/s10118-019-2202-7http://dx.doi.org/10.1007/s10118-019-2202-7
Schick C. Anal Bioanal Chem, 2009, 395: 1589-1611. doi:10.1007/s00216-009-3169-yhttp://dx.doi.org/10.1007/s00216-009-3169-y
Feng Shuqin(冯舒勤), Zhang Naiwen(张乃文), Ren Jie(任杰). Plastics(塑料), 2011, 40(1): 59-62
0
浏览量
137
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构