浏览全部资源
扫码关注微信
清华大学化学工程系 北京 100084
E-mail: yangzhenzhong@tsinghua.edu.cn
纸质出版日期:2022-12-20,
网络出版日期:2022-09-09,
收稿日期:2022-05-09,
录用日期:2022-06-14
移动端阅览
叶一兰,孙大吟,杨振忠.高分子单链-胶体杂化纳米颗粒的合成进展与挑战[J].高分子学报,2022,53(12):1429-1444.
Ye Yi-lan,Sun Da-yin,Yang Zhen-zhong.Development and Challenges of the Synthesis of Polymeric Single Chain-colloid Hybrid Nanoparticles[J].ACTA POLYMERICA SINICA,2022,53(12):1429-1444.
叶一兰,孙大吟,杨振忠.高分子单链-胶体杂化纳米颗粒的合成进展与挑战[J].高分子学报,2022,53(12):1429-1444. DOI: 10.11777/j.issn1000-3304.2022.22177.
Ye Yi-lan,Sun Da-yin,Yang Zhen-zhong.Development and Challenges of the Synthesis of Polymeric Single Chain-colloid Hybrid Nanoparticles[J].ACTA POLYMERICA SINICA,2022,53(12):1429-1444. DOI: 10.11777/j.issn1000-3304.2022.22177.
高分子单链-胶体杂化纳米颗粒是以高分子单链/单胶体为特征尺度、集成高分子单链与胶体特性的功能材料,为创制亚10 nm超精细结构与单链器件奠定物质基础. 高分子单链-胶体杂化纳米颗粒的精准构筑与规模制备是合成方法学核心,有助于深入揭示构效关系和获得新奇特性,其规模制备为新材料交叉应用提供必要条件. 本文总结了3类高分子单链-胶体杂化纳米颗粒的合成进展:(1) 高分子单链分子内交联;(2) 单体边聚合边交联;(3) 高分子单链键接纳米颗粒(单链@纳米颗粒);展望了高分子单链-胶体杂化纳米颗粒合成方法发展趋势.
Polymeric single chain-colloid hybrid nanoparticles are functional building blocks with the characteristic lengths of single chains. These hybrid nanoparticles integrate the characteristics of polymers and colloids and lay the foundation for the construction of sub-10 nm superstructures and single chain devices. Central to the synthetic methodology
the precise architecture and scalable fabrication of polymeric single chain-colloid hybrid nanoparticles are fundamental to the discovery of novel structure-property relationships and are essential for materials applications. In this review
we summarize recent progress in t
he synthesis of polymeric single-colloid hybrid nanoparticles
including (1) intramolecular crosslinking of polymeric single chains
(2) intramolecular cyclization through polymerization
and (3) chemical bonding between single chains and colloidal surfaces. For intramolecular crosslinking
precursor chains with diverse topologies (
e.g.
rings
bottlebrushes
and dendrimers) contribute to unique conformational and structural characteristics for single chain nanoparticles (SCNPs). More precise regulation of the precursor sequences
the tertiary structures of SCNPs
and the responsive intramolecular crosslinking are expected in future study. To address the challenge of scalable synthesis of SCNPs
electrostatic-mediated intramolecular crosslinking has been an efficient method. By utilizing electrostatic repulsion
intramolecular crosslinking can be achieved at relatively high solid contents. For intramolecular cyclization through polymerization
polymer networks constructed through cyclization of single living species is the key. This method has been underestimated; in fact
it has the potential to sequentially generate topologies like "chain-crosslinked sphere-chain"
in analogy to the polymerization of block copolymers. The scalable synthesis of SCNPs through intramolecular cyclization is still challenging since gelation occurs at low reaction conversion. Theoretical and experimental research are expected to collaborate to generate new understanding in regulating single species cyclization during polymerization and the SCNP network construction. For chemical bonding between single chains and colloidal surfaces
single chain@colloids can be achieved in a fast and scalable manner. The types of colloids should be largely expanded to cover a wide range of functional nanoparticles. In addition
precise regulation of the composition
number
and spatial arrangement of single chains at colloidal surfaces are critical to develop functional polymeric single chain-colloid hybrid nanoparticles.
2
单链纳米颗粒分子内交联功能胶体空间分区
Single chain nanoparticlesIntramolecular crosslinkingFunctional colloidsSpatial compartment
Roy R K, Meszynska A, Laure C, Charles L, Verchin C, Lutz J F. Nat Comm, 2015, 6: 7237. doi:10.1038/ncomms8237http://dx.doi.org/10.1038/ncomms8237
Lutz J F, Ouchi M, Liu D R, Sawamoto M. Science, 2013, 341(6146): 1238149. doi:10.1126/science.1238149http://dx.doi.org/10.1126/science.1238149
Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N. Macromolecules, 2017, 50(4): 1253-1290. doi:10.1021/acs.macromol.6b02569http://dx.doi.org/10.1021/acs.macromol.6b02569
Grubbs R B, Grubbs R H. Macromolecules, 2017, 50(18): 6979-6997. doi:10.1021/acs.macromol.7b01440http://dx.doi.org/10.1021/acs.macromol.7b01440
Schappacher M, Deffieux A. Science, 2008, 319(5869): 1512-1515. doi:10.1126/science.1153848http://dx.doi.org/10.1126/science.1153848
Bielawski C W, Benitez D, Grubbs R H. Science, 2002, 297(5589): 2041-2044. doi:10.1126/science.1075401http://dx.doi.org/10.1126/science.1075401
McGraw M L, Clarke R W, Chen E Y X. J Am Chem Soc, 2021, 143(9): 3318-3322. doi:10.1021/jacs.1c00561http://dx.doi.org/10.1021/jacs.1c00561
Ouchi M, Kammiyada H, Sawamoto M. Polym Chem, 2017, 8(34): 4970-4977. doi:10.1039/c7py00638ahttp://dx.doi.org/10.1039/c7py00638a
Li Z, Tang M, Liang S, Zhang M, Biesold G M, He Y, Hao S M, Choi W, Liu Y, Peng J, Lin Z. Prog Polym Sci, 2021, 116: 101387. doi:10.1016/j.progpolymsci.2021.101387http://dx.doi.org/10.1016/j.progpolymsci.2021.101387
Groschel A H, Mueller A H E. Nanoscale, 2015, 7(28): 11841-11876
Steinhaus A, Chakroun R, Muellner M, Nghiem T L, Hildebrandt M, Groeschel A H. ACS Nano, 2019, 13(6): 6269-6278. doi:10.1021/acsnano.8b09546http://dx.doi.org/10.1021/acsnano.8b09546
Liu Y F, Abetz V, Muller A H E. Macromolecules, 2003, 36(21): 7894-7898
Walther A, Andre X, Drechsler M, Abetz V, Mueller A H E. J Am Chem Soc, 2007, 129(19): 6187-6198. doi:10.1021/ja068153vhttp://dx.doi.org/10.1021/ja068153v
Han S, Pensec S, Yilmaz D, Lorthioir C, Jestin J, Guigner J M, Niepceron F, Rieger J, Stoffelbach F, Nicol E, Colombani O, Bouteiller L. Nat Commun, 2020, 11(1): 4760. doi:10.1038/s41467-020-18587-2http://dx.doi.org/10.1038/s41467-020-18587-2
Choisnet T, Canevet D, Salle M, Lorthioir C, Bouteiller L, Woisel P, Niepceron F, Nicol E, Colombani O. ACS Nano, 2021, 15(2): 2569-2577. doi:10.1021/acsnano.0c07039http://dx.doi.org/10.1021/acsnano.0c07039
Danial M, Tran C M N, Young P G, Perrier S, Jolliffe K A. Nat Commun, 2013, 4: 2780. doi:10.1038/ncomms3780http://dx.doi.org/10.1038/ncomms3780
Ouchi M, Badi N, Lutz J F, Sawamoto M. Nat Chem, 2011, 3(12): 917-924. doi:10.1038/nchem.1175http://dx.doi.org/10.1038/nchem.1175
Gonzalez-Burgos M, Latorre-Sanchez A, Pomposo J A. Chem Soc Rev, 2015, 44(17): 6122-6142. doi:10.1039/c5cs00209ehttp://dx.doi.org/10.1039/c5cs00209e
Chen R, Berda E B. ACS Macro Letters, 2020, 9(12): 1836-1843. doi:10.1021/acsmacrolett.0c00774http://dx.doi.org/10.1021/acsmacrolett.0c00774
Kumar S K, Benicewicz B C, Vaia R A, Winey K I. Macromolecules, 2017, 50(3): 714-731. doi:10.1021/acs.macromol.6b02330http://dx.doi.org/10.1021/acs.macromol.6b02330
Wang G, Cao R Y, Chen R, Mo L, Han J F, Wang X, Xu X, Jiang T, Deng Y Q, Lyu K, Zhu S Y, Qin E D, Tang R, Qin C F. Proc Natl Acad Sci USA, 2013, 110(19): 7619-7624. doi:10.1073/pnas.1300233110http://dx.doi.org/10.1073/pnas.1300233110
Zhao M, Chen Y, Wang K, Zhang Z, Streit J K, Fagan J A, Tang J, Zheng M, Yang C, Zhu Z, Sun W. Science, 2020, 368(6493): 878-881. doi:10.1126/science.aaz7435http://dx.doi.org/10.1126/science.aaz7435
Mavila S, Eivgi O, Berkovich I, Lemcoff N G. Chem Rev, 2016, 116(3): 878-961. doi:10.1021/acs.chemrev.5b00290http://dx.doi.org/10.1021/acs.chemrev.5b00290
Gao Y, Zhou D, Lyu J, Sigen A, Xu Q, Newland B, Matyjaszewski K, Tai H, Wang W. Nat Rev Chem, 2020, 4(4): 194-212. doi:10.1038/s41570-020-0170-7http://dx.doi.org/10.1038/s41570-020-0170-7
Pang X, Zhao L, Han W, Xin X, Lin Z. Nat Nanotech, 2013, 8(6): 426-431. doi:10.1038/nnano.2013.85http://dx.doi.org/10.1038/nnano.2013.85
Chen Y, Yang D, Yoon Y J, Pang X, Wang Z, Jung J, He Y, Harn Y, He M, Zhang S, Zhang G, Lin Z. J Am Chem Soc, 2017, 139(37): 12956-12967. doi:10.1021/jacs.7b04545http://dx.doi.org/10.1021/jacs.7b04545
Pang X, He Y, Jung J, Lin Z. Science, 2016, 353(6305): 1268-1272. doi:10.1126/science.aad8279http://dx.doi.org/10.1126/science.aad8279
Dukes D, Li Y, Lewis S, Benicewicz B, Schadler L, Kumar S K. Macromolecules, 2010, 43(3): 1564-1570. doi:10.1021/ma901228thttp://dx.doi.org/10.1021/ma901228t
Yi C, Yang Y, Liu B, He J, Nie Z. Chem Soc Rev, 2020, 49(2): 465-508. doi:10.1039/c9cs00725chttp://dx.doi.org/10.1039/c9cs00725c
Yin G Z, Zhang W B, Cheng S Z D. Sci China-Chem, 2017, 60(3): 338-352. doi:10.1007/s11426-016-0436-xhttp://dx.doi.org/10.1007/s11426-016-0436-x
Kuhn W, Majer H. Makromolekulare Chemie, 1956, 18-9(MAR): 239-253. doi:10.1002/macp.1956.020180122http://dx.doi.org/10.1002/macp.1956.020180122
Pomposo J A, Perez-Baena I, Lo Verso F, Moreno A J, Arbe A, Colmenero J. ACS Macro Lett, 2014, 3(8): 767-772. doi:10.1021/mz500354qhttp://dx.doi.org/10.1021/mz500354q
Lo Verso F, Pomposo J A, Colmenero J, Moreno A J. Soft Matter, 2015, 11(7): 1369-1375. doi:10.1039/c4sm02475chttp://dx.doi.org/10.1039/c4sm02475c
Moreno A J, Lo Verso F, Sanchez-Sanchez A, Arbe A, Colmenero J, Pomposo J A. Macromolecules, 2013, 46(24): 9748-9759. doi:10.1021/ma4021399http://dx.doi.org/10.1021/ma4021399
Danielsen S P O, McCarty J, Shea J E, Delaney K T, Fredrickson G H. Proc Natl Acad Sci USA, 2019, 116(17): 8224-8232. doi:10.1073/pnas.1900435116http://dx.doi.org/10.1073/pnas.1900435116
Rubio-Cervilla J, Frisch H, Barner-Kowollik C, Pomposo J A. Macromol Rapid Commun, 2019, 40(1): 1800491. doi:10.1002/marc.201800491http://dx.doi.org/10.1002/marc.201800491
Formanek M, Moreno A J. Soft Matter, 2017, 13(37): 6430-6438. doi:10.1039/c7sm01547jhttp://dx.doi.org/10.1039/c7sm01547j
Collot M, Schild J, Fam K T, Bouchaala R, Klymchenko A S. ACS Nano, 2020, 14(10): 13924-13937. doi:10.1021/acsnano.0c06348http://dx.doi.org/10.1021/acsnano.0c06348
Huang K, Rzayev J. J Am Chem Soc, 2009, 131(19): 6880-6885. doi:10.1021/ja901936ghttp://dx.doi.org/10.1021/ja901936g
Lemcoff N G, Spurlin T A, Gewirth A A, Zimmerman S C, Beil J B, Elmer S L, Vandeveer H G. J Am Chem Soc, 2004, 126(37): 11420-11421. doi:10.1021/ja047055bhttp://dx.doi.org/10.1021/ja047055b
Chen J, Garcia E S, Zimmerman S C. Acc Chem Res, 2020, 53(6): 1244-1256. doi:10.1021/acs.accounts.0c00178http://dx.doi.org/10.1021/acs.accounts.0c00178
Ito K. Polym J, 2007, 39(6): 489-499. doi:10.1295/polymj.pj2006239http://dx.doi.org/10.1295/polymj.pj2006239
Wu Y H, Zhang J, Du F S, Li Z C. ACS Macro Letters, 2017, 6(12): 1398-1403. doi:10.1021/acsmacrolett.7b00863http://dx.doi.org/10.1021/acsmacrolett.7b00863
Huang Z, Zhao J, Wang Z, Meng F, Ding K, Pan X, Zhou N, Li X, Zhang Z, Zhu X. Angew Chem Int Ed, 2017, 56(44): 13612-13617. doi:10.1002/anie.201706522http://dx.doi.org/10.1002/anie.201706522
Xue H, Zhao Y, Wu H, Wang Z, Yang B, Wei Y, Wang Z, Tao L. J Am Chem Soc, 2016, 138(28): 8690-8693. doi:10.1021/jacs.6b04425http://dx.doi.org/10.1021/jacs.6b04425
Sugai N, Heguri H, Yamamoto T, Tezuka Y. J Am Chem Soc, 2011, 133(49): 19694-19697. doi:10.1021/ja209394mhttp://dx.doi.org/10.1021/ja209394m
Kyoda K, Yamamoto T, Tezuka Y. J Am Chem Soc, 2019, 141(18): 7526-7536. doi:10.1021/jacs.9b02459http://dx.doi.org/10.1021/jacs.9b02459
Elacqua E, Manning K B, Lye D S, Pomarico S K, Morgia F, Weck M. J Am Chem Soc, 2017, 139(35): 12240-12250. doi:10.1021/jacs.7b06201http://dx.doi.org/10.1021/jacs.7b06201
Cole J P, Lessard J J, Rodriguez K J, Hanlon A M, Reville E K, Mancinelli J P, Berda E B. Polym Chem, 2017, 8(38): 5829-5835. doi:10.1039/c7py01133dhttp://dx.doi.org/10.1039/c7py01133d
Altintas O, Artar M, ter Huurne G, Voets I K, Palmans A R A, Barner-Kowollik C, Meijer E W. Macromolecules, 2015, 48(24): 8921-8932. doi:10.1021/acs.macromol.5b01990http://dx.doi.org/10.1021/acs.macromol.5b01990
Watanabe K, Kaizawa N, Ree B J, Yamamoto T, Tajima K, Isono T, Satoh T. Angew Chem Int Ed, 2021, 60(33): 18122-18128. doi:10.1002/anie.202103969http://dx.doi.org/10.1002/anie.202103969
Hou X, Guan S, Qu T, Wu X, Wang D, Chen A, Yang Z. ACS Macro Lett, 2018, 7(12): 1475-1479. doi:10.1021/acsmacrolett.8b00750http://dx.doi.org/10.1021/acsmacrolett.8b00750
Kodura D, Houck H A, Bloesser F R, Goldmann A S, Du Prez F E, Frisch H, Barner-Kowollik C. Chem Sci, 2021, 12(4): 1302-1310. doi:10.1039/d0sc05818ahttp://dx.doi.org/10.1039/d0sc05818a
Levy A, Feinstein R, Diesendruck C E. J Am Chem Soc, 2019, 141(18): 7256-7260. doi:10.1021/jacs.9b01960http://dx.doi.org/10.1021/jacs.9b01960
Cui Z, Huang L, Ding Y, Zhu X, Lu X, Cai Y. ACS Macro Lett, 2018, 7(5): 572-575. doi:10.1021/acsmacrolett.8b00199http://dx.doi.org/10.1021/acsmacrolett.8b00199
Xiang D, Chen X, Tang L, Jiang B, Yang Z. CCS Chem, 2019, 1(5): 407-430. doi:10.31635/ccschem.019.20190035http://dx.doi.org/10.31635/ccschem.019.20190035
Xiang D, Jiang B, Liang F, Yan L, Yang Z. Macromolecules, 2020, 53(3): 1063-1069. doi:10.1021/acs.macromol.9b02388http://dx.doi.org/10.1021/acs.macromol.9b02388
Wang J, Chen X, Lang F, Yang L, Qiu D, Yang Z. Chem Commun, 2020, 56(27): 3875-3878. doi:10.1039/d0cc00686fhttp://dx.doi.org/10.1039/d0cc00686f
Lang F, Xiang D, Wang J, Yang L, Qao Y, Yang Z. Macromolecules, 2020, 53(6): 2271-2278. doi:10.1021/acs.macromol.0c00180http://dx.doi.org/10.1021/acs.macromol.0c00180
Xu W, Xiang D, Xu J, Ye Y, Qiu D, Yang Z. Polym Chem, 2021, 12(2): 172-176. doi:10.1039/d0py01606chttp://dx.doi.org/10.1039/d0py01606c
Shao Y, Wang Y L, Tang Z, Wen Z, Chang C, Wang C, Sun D, et al. Angew Chem Int Ed, 2022, doi.org/10.1002/anie.202205183http://dx.doi.org/10.1002/anie.202205183
Zhou H, Woo J, Cok A M, Wang M, Olsen B D, Johnson J A. Proc Natl Acad Sci USA., 2012, 109(47): 19119-19124. doi:10.1073/pnas.1213169109http://dx.doi.org/10.1073/pnas.1213169109
Zhong M, Wang R, Kawamoto K, Olsen B D, Johnson J A. Science, 2016, 353(6305): 1264-1268. doi:10.1126/science.aag0184http://dx.doi.org/10.1126/science.aag0184
Zheng Y, Cao H, Newland B, Dong Y, Pandit A, Wang W. J Am Chem Soc, 2011, 133(33): 13130-13137. doi:10.1021/ja2039425http://dx.doi.org/10.1021/ja2039425
Schnitte M, Staiger A, Casper L A, Mecking S. Nat Commun, 2019, 10: 2592. doi:10.1038/s41467-019-10692-1http://dx.doi.org/10.1038/s41467-019-10692-1
Wang J, Wang R, Gu Y, Sourakov A, Olsen B D, Johnson J A. Chem Sci, 2019, 10(20): 5332-5337. doi:10.1039/c9sc01297dhttp://dx.doi.org/10.1039/c9sc01297d
Worden J G, Shaffer A W, Huo Q. Chem Commun, 2004, 5: 518-519. doi:10.1039/b312819ahttp://dx.doi.org/10.1039/b312819a
Liu Y, Liu T, Xiao Y Y, Qing Y G, Lei H, Huang Z, Zhang R, Wang Y, Wang J, Liu F, Bian F G, Meijer E W, Aida T, Huang M, Cheng S Z D. Proc Natl Acad Sci USA, 2022, 119(3): e2115304119. doi:10.1073/pnas.2115304119http://dx.doi.org/10.1073/pnas.2115304119
Yao X, Jing J, Liang F, Yang Z. Macromolecules, 2016, 49(24): 9618-9625. doi:10.1021/acs.macromol.6b02004http://dx.doi.org/10.1021/acs.macromol.6b02004
Jing J, Jiang B, Liang F, Yang Z. ACS Macro Letters, 2019, 8(6): 737-742. doi:10.1021/acsmacrolett.9b00234http://dx.doi.org/10.1021/acsmacrolett.9b00234
Yang L, Xu J, Wang J, Lang F, Liu B, Yang Z. Macromolecules, 2020, 53(6): 2264-2270. doi:10.1021/acs.macromol.0c00109http://dx.doi.org/10.1021/acs.macromol.0c00109
Marson R L, Nguyen T D, Glotzer S C. MRS Commun, 2015, 5: 397-406. doi:10.1557/mrc.2015.54http://dx.doi.org/10.1557/mrc.2015.54
Zeng R, Chen L, Yan Q. Angew Chem Int Ed, 2020, 59(42): 18418-18422. doi:10.1002/anie.202006842http://dx.doi.org/10.1002/anie.202006842
Gao Y, Bohmer V I, Zhou D, Zhao T, Wang W, Paulusse J M J. J Control Release, 2016, 244375-383
Frisch H, Menzel J P, Bloesser F R, Marschner D E, Mundsinger K, Barner-Kowollik C. J Am Chem Soc, 2018, 140(30): 9551-9557. doi:10.1021/jacs.8b04531http://dx.doi.org/10.1021/jacs.8b04531
Galant O, Donmez H B, Barner-Kowollik C, Diesendruck C E. Angew Chem Int Ed, 2021, 60(4): 2042-2046. doi:10.1002/anie.202010429http://dx.doi.org/10.1002/anie.202010429
0
浏览量
232
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构