浏览全部资源
扫码关注微信
材料先进技术教育部重点实验室 西南交通大学 成都 610031
E-mail: cuishuxun@swjtu.edu.cn
纸质出版日期:2023-02-20,
网络出版日期:2022-09-21,
收稿日期:2022-05-15,
录用日期:2022-07-18
扫 描 看 全 文
陆松,张罚,王海龙等.可描述硅橡胶弹性的理论模型[J].高分子学报,2023,54(02):225-234.
Lu Song,Zhang Fa,Wang Hai-long,et al.A Theoreical Model for Describing the Elasticity of Silicone Rubber[J].ACTA POLYMERICA SINICA,2023,54(02):225-234.
陆松,张罚,王海龙等.可描述硅橡胶弹性的理论模型[J].高分子学报,2023,54(02):225-234. DOI: 10.11777/j.issn1000-3304.2022.22184.
Lu Song,Zhang Fa,Wang Hai-long,et al.A Theoreical Model for Describing the Elasticity of Silicone Rubber[J].ACTA POLYMERICA SINICA,2023,54(02):225-234. DOI: 10.11777/j.issn1000-3304.2022.22184.
硅橡胶是一类应用广泛的弹性体材料. 然而由于其复杂的三维网络结构,难以实现硅橡胶的理性设计. 本研究尝试从单分子弹性入手来建立从硅橡胶微观力学性质到宏观性能之间的关联. 首先,通过基于原子力显微镜的单分子力谱实验测量了甲基乙烯基硅橡胶中2个主成分(硅氧烷链和碳-碳链)的单链弹性(包含熵弹性和焓弹性). 随后,利用量子力学计算得出上述2种分子链的理论单链弹性. 硅氧烷链和碳-碳链的实验曲线均能与理论曲线很好地重合,表明已成功获取了这2种分子链在准无扰环境中的基准弹性. 然后,2个主成分的基准弹性同时被整合到传统的橡胶统计学模型中. 最终,通过参数可调的新橡胶弹性模型(称作TCQMG模型)描述了3种不同硅橡胶在整个形变范围内的力学性能. 此外,借助TCQMG模型模拟了多个交联网络参数对于硅橡胶力学性能的影响,且模拟结果符合实验结果. 该模型不仅有助于理解硅橡胶的复杂交联网络结构,还能够为新型硅橡胶的理性设计提供指导. 考虑到硅橡胶与其他弹性体在交联网络结构上的相似之处,TCQMG模型有望用于描述这些弹性体的宏观力学性能.
Silicone rubber (SR) is a widely used elastomer material. However
due to the complicated network structure
it is difficult to realize the rational design of SR. In this study
we attempt to build the correlation between the microscopic and macroscopic mechanical properties of SR from the perspective of single-chain elasticity. First
the single-chain elasticities (including entropic and enthalpic elasticities) of the main component chains (siloxane chain) and cross-linking chains (carbon-carbon chain) in methyl vinyl SR are obtained by single-molecule atomic force microscopy. Subsequently
the theoretical single-chain elasticities of the above two polymer chains are obtained by quantum mechanical calculations. The theoretical results are consistent with the experimental results
indicating that the inherent elasticities of the two polymer chains in the quasi-undisturbed environment have been obtained. Next
the inherent elasticities of the two polymer chains are integrated into the traditional statistical model of rubber. Finally
it is found that the mechanical properties of three different SRs over the entire deformation range can be perfectly described by the new model (called TCQMG model) with adjustable parameters. In addition
the effects of multiple parameters on the mechanical properties of SR are analyzed by the TCQMG model. This model will help bridge the gap between the single-molecule mechanics and macroscopic properties of SR elastomer materials
and can provide theoretical guidance for the rational design of new SRs. Considering the similarity in cross-linking network structure between SR and other elastomers
it is expected that the TCQMG model can be used as a general model to describe the macroscopic properties of these elastomers.
硅橡胶单分子力谱统计模型交联网络
Silicone rubberSingle-molecule atomic force microscopyStatistical modelCross-linking network
Shit S. C.; Shah, P. A review on silicone rubber. Natl. Acad. Sci. Lett., 2013, 36, 355-365. doi:10.1007/s40009-013-0150-2http://dx.doi.org/10.1007/s40009-013-0150-2
Hron P. Hydrophilisation of silicone rubber for medical applications. Polym. Int., 2003, 52, 1531-1539. doi:10.1002/pi.1273http://dx.doi.org/10.1002/pi.1273
Mu Q.; Feng S.; Diao G. Thermal conductivity of silicone rubber filled with ZnO. Polym. Compos., 2007, 28, 125-130. doi:10.1002/pc.20276http://dx.doi.org/10.1002/pc.20276
Zhang C.; Wang J.; Song S. Preparation of a novel type of flame retardant diatomite and its application in silicone rubber composites. Adv. Powder Technol., 2019, 30, 1567-1575. doi:10.1016/j.apt.2019.05.002http://dx.doi.org/10.1016/j.apt.2019.05.002
Flory P. J.; Erman B. Theory of elasticity of polymer networks. 3. Macromolecules, 1982, 15, 800-806. doi:10.1021/ma00231a022http://dx.doi.org/10.1021/ma00231a022
Flory P. J.; Rehner Jr J. Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity. J. Chem. Phys., 1943, 11, 512-520. doi:10.1063/1.1723791http://dx.doi.org/10.1063/1.1723791
Wang M. C.; Guth E. Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys., 1952, 20, 1144-1157. doi:10.1063/1.1700682http://dx.doi.org/10.1063/1.1700682
Arruda E. M.; Boyce M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids, 1993, 41, 389-412. doi:10.1016/0022-5096(93)90013-6http://dx.doi.org/10.1016/0022-5096(93)90013-6
Fang H.; Li J.; Chen H.; Liu B.; Huang W.; Liu Y.; Wang T. Radiation induced degradation of silica reinforced silicone foam: experiments and modeling. Mech. Mater., 2017, 105, 148-156. doi:10.1016/j.mechmat.2016.11.006http://dx.doi.org/10.1016/j.mechmat.2016.11.006
Wu P.; Van Der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids, 1993, 41, 427-456. doi:10.1016/0022-5096(93)90043-fhttp://dx.doi.org/10.1016/0022-5096(93)90043-f
Luo Z.; Zhang A.; Chen Y.; Shen Z.; Cui S. How big is big enough? Effect of length and shape of side chains on the single-chain enthalpic elasticity of a macromolecule. Macromolecules, 2016, 49, 3559-3565. doi:10.1021/acs.macromol.6b00247http://dx.doi.org/10.1021/acs.macromol.6b00247
Zhang F.; Gong Z.; Cai W.; Qian H.; Lu Z.; Cui S. Single-chain mechanics of cis-1,4-polyisoprene and polysulfide. Polymer, 2022, 240, 124473. doi:10.1016/j.polymer.2021.124473http://dx.doi.org/10.1016/j.polymer.2021.124473
Zhang F.; Cui S. A two-component statistical model for natural rubber. Polymer, 2022, 242, 124462. doi:10.1016/j.polymer.2021.124462http://dx.doi.org/10.1016/j.polymer.2021.124462
张希. 橡胶弹性模型的新进展. 高分子学报, 2022, 53, 441-444. doi:10.11777/j.issn1000-3304.2022.22RH2http://dx.doi.org/10.11777/j.issn1000-3304.2022.22RH2
Chai H.; Tang X.; Ni M.; Chen F.; Zhang Y.; Chen D.; Qiu Y. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J. Nucl. Mater., 2015, 464, 210-215. doi:10.1016/j.jnucmat.2015.04.048http://dx.doi.org/10.1016/j.jnucmat.2015.04.048
Yu T.; Shan Y.; Li Z.; Wang X.; Cui H.; Yang K.; Cui Y. Application of a super-stretched self-healing elastomer based on methyl vinyl silicone rubber for wearable electronic sensors. Polym. Chem., 2021, 12, 6145-6153. doi:10.1039/d1py01089ahttp://dx.doi.org/10.1039/d1py01089a
Lopez L.; Cosgrove A.; Hernandez-Ortiz J.; Osswald T. Modeling the vulcanization reaction of silicone rubber. Polym. Eng. Sci., 2007, 47, 675-683. doi:10.1002/pen.20698http://dx.doi.org/10.1002/pen.20698
Kruželák J.; Sýkora R.; Hudec I. Vulcanization of rubber compounds with peroxide curing systems. Rubber Chem. Technol., 2017, 90, 60-88. doi:10.5254/rct.16.83758http://dx.doi.org/10.5254/rct.16.83758
Lu S.; Cai W.; Cao N.; Qian H.; Lu Z.; Cui S. Understanding the extraordinary flexibility of polydimethylsiloxane through single-molecule mechanics. ACS Mater. Lett., 2022, 4, 329-335. doi:10.1021/acsmaterialslett.1c00655http://dx.doi.org/10.1021/acsmaterialslett.1c00655
Zhang S.; Qian H.; Liu Z.; Ju H.; Lu Z.; Zhang H.; Chi L.; Cui S. Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew. Chem. Int. Ed., 2019, 58, 1659-1663. doi:10.1002/anie.201811152http://dx.doi.org/10.1002/anie.201811152
Kolberg A.; Wenzel C.; Hackenstrass K.; Schwarzl R.; Rüttiger C.; Hugel T.; Gallei M.; Netz R. R.; Balzer B. N. Opposing temperature dependence of the stretching response of single PEG and PNiPAM polymers. J. Am. Chem. Soc., 2019, 141, 11603-11613. doi:10.1021/jacs.9b04383http://dx.doi.org/10.1021/jacs.9b04383
张薇, 侯矍, 李楠, 张文科. 基于原子力显微镜的单分子力谱技术在高分子表征中的应用. 高分子学报, 2021, 52, 1523-1546. doi:10.11777/j.issn1000-3304.2020.20266http://dx.doi.org/10.11777/j.issn1000-3304.2020.20266
Fu L.; Wang H.; Li H. Harvesting mechanical work from folding-based protein engines: from single-molecule mechanochemical cycles to macroscopic devices. CCS Chem., 2019, 1, 138-147. doi:10.31635/ccschem.019.20180012http://dx.doi.org/10.31635/ccschem.019.20180012
Deng Y.; Wu T.; Wang M.; Shi S.; Yuan G.; Li X.; Chong H.; Wu B.; Zheng P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat. Commun., 2019, 10, 2775. doi:10.1038/s41467-019-10696-xhttp://dx.doi.org/10.1038/s41467-019-10696-x
Cai W.; Xu D.; Qian L.; Wei J.; Xiao C.; Qian L.; Lu Z.; Cui S. Force-induced transition of π-π stacking in a single polystyrene chain. J. Am. Chem. Soc., 2019, 141, 9500-9503. doi:10.1021/jacs.9b03490http://dx.doi.org/10.1021/jacs.9b03490
Huang W.; Wu X.; Gao X.; Yu Y.; Lei H.; Zhu Z.; Shi Y.; Chen Y.; Qin M.; Wang W.; Cao Y. Maleimide-thiol adducts stabilized through stretching. Nat. Chem., 2019, 11, 310-319. doi:10.1038/s41557-018-0209-2http://dx.doi.org/10.1038/s41557-018-0209-2
Zhao P.; Xu C.; Sun C.; Xia J.; Sun L.; Li J.; Xu H. Exploring the difference of bonding strength between silver (I) and chalcogenides in block copolymer systems. Polym. Chem., 2020, 11, 7087-7093. doi:10.1039/d0py01201ghttp://dx.doi.org/10.1039/d0py01201g
Xing H.; Li Z.; Wang W.; Liu P.; Liu J.; Song Y.; Wu Z. L.; Zhang W.; Huang F. Mechanochemistry of an interlocked poly[2]catenane: from single molecule to bulk gel. CCS Chem., 2020, 2, 513-523. doi:10.31635/ccschem.019.20190043http://dx.doi.org/10.31635/ccschem.019.20190043
Tian Y.; Cao X.; Li X.; Zhang H.; Sun C.; Xu Y.; Weng W.; Zhang W.; Boulatov R. A polymer with mechanochemically active hidden length. J. Am. Chem. Soc., 2020, 142, 18687-18697. doi:10.1021/jacs.0c09220http://dx.doi.org/10.1021/jacs.0c09220
夏嘉豪, 李宏斌, 许华平. 含硫/硒动态共价键强弱的测定. 高分子学报, 2020, 51, 205-213. doi:10.11777/j.issn1000-3304.2020.20134http://dx.doi.org/10.11777/j.issn1000-3304.2020.20134
Hutter J. L.; Bechhoefer J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum., 1993, 64, 1868-1873. doi:10.1063/1.1144449http://dx.doi.org/10.1063/1.1144449
Hinterdorfer P.; Dufrêne Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods, 2006, 3, 347-355. doi:10.1038/nmeth871http://dx.doi.org/10.1038/nmeth871
Wang K.; Pang X.; Cui S. Inherent stretching elasticity of a single polymer chain with a carbon-carbon backbone. Langmuir, 2013, 29, 4315-4319. doi:10.1021/la400626xhttp://dx.doi.org/10.1021/la400626x
Cui S.; Albrecht C.; Kühner F.; Gaub H. E. Weakly bound water molecules shorten single-stranded DNA. J. Am. Chem. Soc., 2006, 128, 6636-6639. doi:10.1021/ja0582298http://dx.doi.org/10.1021/ja0582298
Bao Y.; Luo Z.; Cui S. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev., 2020, 49, 2799-2827. doi:10.1039/c9cs00855ahttp://dx.doi.org/10.1039/c9cs00855a
Zhang W.; Zhang X. Single molecule mechanochemistry of macromolecules. Prog. Polym. Sci., 2003, 28, 1271-1295. doi:10.1016/s0079-6700(03)00046-7http://dx.doi.org/10.1016/s0079-6700(03)00046-7
许俊, 曹楠普, 肖尧鑫, 罗仲龙, 鲍雨, 崔树勋. 聚乙二醇生物相容性与结合水关系的单分子力谱研究. 高分子学报, 2020, 51, 754-761. doi:10.11777/j.issn1000-3304.2019.19219http://dx.doi.org/10.11777/j.issn1000-3304.2019.19219
Bao Y.; Qian H.; Lu Z.; Cui S. The unexpected flexibility of natural cellulose at a single-chain level and its implications to the design of nano materials. Nanoscale, 2014, 6, 13421-13424. doi:10.1039/c4nr04862hhttp://dx.doi.org/10.1039/c4nr04862h
Cai W.; Lu S.; Wei J.; Cui S. Single-chain polymer models incorporating the effects of side groups: An approach to general polymer models. Macromolecules, 2019, 52, 7324-7330. doi:10.1021/acs.macromol.9b01542http://dx.doi.org/10.1021/acs.macromol.9b01542
Hugel T.; Rief M.; Seitz M.; Gaub H. E.; Netz R. R. Highly stretched single polymers: Atomic-force-microscope experiments versus ab-initio theory. Phys. Rev. Lett., 2005, 94, 048301. doi:10.1103/physrevlett.94.048301http://dx.doi.org/10.1103/physrevlett.94.048301
Cui S.; Yu Y.; Lin Z. Modeling single chain elasticity of single-stranded DNA: a comparison of three models. Polymer, 2009, 50, 930-935. doi:10.1016/j.polymer.2008.12.012http://dx.doi.org/10.1016/j.polymer.2008.12.012
Flory P. J.; Crescenzi V.; Mark J. E. Configuration of the poly-(dimethylsiloxane) chain. iii. correlation of theory and experiment. J. Am. Chem. Soc., 1964, 86, 146-152. doi:10.1021/ja01056a007http://dx.doi.org/10.1021/ja01056a007
Beatty M. F. An average-stretch full-network model for rubber elasticity. J. Elasticity, 2003, 70, 65-86. doi:10.1023/b:elas.0000005553.38563.91http://dx.doi.org/10.1023/b:elas.0000005553.38563.91
Yang H.; Yao X.; Zheng Z.; Gong L.; Yuan L.; Yuan Y.; Liu Y. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing. Compos. Sci. Technol., 2018, 167, 371-378. doi:10.1016/j.compscitech.2018.08.022http://dx.doi.org/10.1016/j.compscitech.2018.08.022
Aksüt D.; Demeter M.; Vancea C.; Şen M. Effect of radiation on vinyl-methyl-polysiloxane and phenyl-vinyl-methyl-polysiloxane elastomers cured with different co-agents: Comparative study of mechanical and relaxation properties. Radiat. Phys. Chem., 2019, 158, 87-93. doi:10.1016/j.radphyschem.2019.01.024http://dx.doi.org/10.1016/j.radphyschem.2019.01.024
Ziraki S.; Zebarjad S. M.; Hadianfard M. J. A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites. J. Mech. Behav. Biomed. Mater., 2016, 57, 289-296. doi:10.1016/j.jmbbm.2016.01.019http://dx.doi.org/10.1016/j.jmbbm.2016.01.019
Zhao F.; Bi W.; Zhao S. Influence of crosslink density on mechanical properties of natural rubber vulcanizates. J. Macromol. Sci., Part B: Phys., 2011, 50, 1460-1469. doi:10.1080/00222348.2010.507453http://dx.doi.org/10.1080/00222348.2010.507453
Mark J. E. Improved elastomers through control of network chain-length distributions. Rubber Chem. Technol., 1999, 72, 465-483. doi:10.5254/1.3538814http://dx.doi.org/10.5254/1.3538814
Mark J. E.; Tang M. Y. Dependence of the elastomeric properties of bimodal networks on the lengths and amounts of the short chains. J. Polym. Sci., Polym. Phys. Ed., 1984, 22, 1849-1855. doi:10.1002/pol.1984.180221101http://dx.doi.org/10.1002/pol.1984.180221101
0
浏览量
90
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构