浏览全部资源
扫码关注微信
华南理工大学 广东省高分子先进制造技术及装备重点实验室 微/纳成型与流变学研究室 广州 510640
E-mail: mmhuang@scut.edu.cn
纸质出版日期:2023-02-20,
网络出版日期:2022-09-21,
收稿日期:2022-06-05,
录用日期:2022-07-29
扫 描 看 全 文
田信龙,黄汉雄.具有较高回弹性的乙烯-辛烯共聚物基微孔复合材料的传感性能[J].高分子学报,2023,54(02):235-244.
Tian Xin-long,Huang Han-xiong.Sensing Performance of POE-based Microcellular Composites with Higher Resilience[J].ACTA POLYMERICA SINICA,2023,54(02):235-244.
田信龙,黄汉雄.具有较高回弹性的乙烯-辛烯共聚物基微孔复合材料的传感性能[J].高分子学报,2023,54(02):235-244. DOI: 10.11777/j.issn1000-3304.2022.22224.
Tian Xin-long,Huang Han-xiong.Sensing Performance of POE-based Microcellular Composites with Higher Resilience[J].ACTA POLYMERICA SINICA,2023,54(02):235-244. DOI: 10.11777/j.issn1000-3304.2022.22224.
通过熔体混炼制备乙烯-辛烯共聚物/多壁碳纳米管/碳纤(POE/MWCNTs/CF,90/5/5,
W/W/W
)复合材料,采用超临界二氧化碳发泡法对其进行釜压发泡,分析3种发泡温度(55、60和65 ℃)下制备的微孔样品的泡孔结构,着重研究其对微孔样品压缩性能和传感器压阻响应(灵敏度和线性响应范围等)的影响. 结果表明,55 ℃下制备的微孔样品呈现较均匀的泡孔结构、较窄的泡孔直径分布(主要在10~30 μm范围内)和厚度适中、连续性高的泡孔壁,这使其具有较高的回弹性、压缩强度、压缩模量和电导率. 采用这种微孔圆片封装成的传感器具有较宽的线性响应范围(0~30%压缩应变)和较高的灵敏度(应变因子为1.67),根据泡孔结构对此进行了分析. 该传感器具有较快速的压阻响应和恢复性能以及良好的重复性,在1000次循环压缩/释放测试中表现出较高的稳定性和耐久性,且能检测手指按压、肘部弯曲、深蹲和脚踩等人体运动(对应较宽的压缩应变范围). 研究表明,采用超临界流体发泡法制备泡孔结构较均匀、泡孔壁厚度适中且连续的微孔导电复合材料具有良好的传感性能.
Poly(ethylene-
co
-octene)/multi-walled carbon nanotubes/carbon fibre (POE/MWCNTs/CF
90:5:5
W/W/W
) composites were prepared by melt-mixing
and the composites were then foamed in a batch process using supercritical carbon dioxide foaming method. The cell structure was analyzed for the microcellular samples prepared at foaming temperatures of 55
60 and 65 ℃
and its effect was emphasized on the compression properties of the microcellular samples and the piezoresistive response (sensitivity and linear response range) of the assembled sensors. It was demonstrated that the microcellular sample foamed at 55 ℃ exhibited a relatively uniform cell structure
a narrower cell diameter distribution (mainly in the range of 10‒30 μm)
and moderately thick and highly continuous cell walls
which endowed the microcellular sample with higher resilience
compression strength
compression modulus and electrical conductivity. The sensor assembled with this microcellular disk had a wider linear response range (0‒30% compression strain) and higher sensitivity (strain factor of 1.67)
which were analyzed based on the cell structure. The sensor exhibited faster piezoresistive response and recovery performance and good repeatability
and showed higher stability and durability in the 1000 cycles of cyclic compression/release test with 30% strain. Moreover
the sensor could monitor typical human motions
such as finger pressing
elbow bending
squatting
and foot stepping
which corresponded to a wider compressive strain range . The results demonstrate that the microcellular conductive composites with more uniform cell structure and moderately thick and highly continuous cell walls foamed by supercritical fluid foaming method have good sensing performance.
乙烯-辛烯共聚物/多壁碳纳米管/碳纤复合材料超临界二氧化碳发泡微孔结构回弹性传感性能
Poly(ethylene-co-octene)/multi-walled carbon nanotubes/carbon fibre compositeSupercritical carbon dioxide foamingMicrocellular structureResilienceSensing performance
Liu H.; Li Q. M.; Zhang S. D.; Yin R.; Liu X. H.; He Y. X.; Dai K.; Shan C. X.; Guo J.; Liu C. T.; Shen C. Y.; Wang X. J.; Wang N.; Wang Z. C.; Wei R. B.; Guo Z. H. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C, 2018, 6, 12121-12141. doi:10.1039/c8tc04079fhttp://dx.doi.org/10.1039/c8tc04079f
董点点, 张静雯, 唐杰, 王军, 杨宽, 马忠雷, 张文博, 陈咏梅, 马建中. 基于天然高分子的导电材料制备及其在柔性传感器件中的应用. 高分子学报, 2020, 51, 864-879. doi:10.11777/j.issn1000-3304.2020.20114http://dx.doi.org/10.11777/j.issn1000-3304.2020.20114
He F. L.; You X. Y.; Wang W. G.; Bai T.; Xue G. F.; Ye M. D. Recent progress in flexible microstructural pressure sensors toward human-machine interaction and healthcare applications. Small Methods, 2021, 5, 2001041. doi:10.1002/smtd.202001041http://dx.doi.org/10.1002/smtd.202001041
Zhai W.; Xia Q. J.; Zhou K. K.; Yue X. Y.; Ren M. N.; Zheng G. Q.; Dai K.; Liu C. T.; Shen C. Y. Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem. Eng. J., 2019, 372, 373-382. doi:10.1016/j.cej.2019.04.142http://dx.doi.org/10.1016/j.cej.2019.04.142
IIglio R.; Mariani S.; Robbiano V.; Strambini L.; Barillaro G. Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range. ACS Appl. Mater. Interfaces, 2018, 10, 13877-13885. doi:10.1021/acsami.8b02322http://dx.doi.org/10.1021/acsami.8b02322
Sang Z.; Ke K.; Manas-Zloczower I. Design strategy for porous composites aimed at pressure sensor application. Small, 2019, 15, 1903487. doi:10.1002/smll.201903487http://dx.doi.org/10.1002/smll.201903487
Rizvi R.; Naguib H. Porosity and composition dependence on electrical and piezoresistive properties of thermoplastic polyurethane nanocomposites. J. Mater. Res., 2013, 28, 2415-2425. doi:10.1557/jmr.2013.218http://dx.doi.org/10.1557/jmr.2013.218
Zhai Y, Yu Y, Zhou K, Yun Z, Huang W, Liu H, Xia Q, Dai K, Zheng G, Liu C, Shen C. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chem Eng J, 2020, 382, 122985. doi:10.1016/j.cej.2019.122985http://dx.doi.org/10.1016/j.cej.2019.122985
Huang Y.; Wang Y.; Sun X. H.; Guo X. H.; Zhang Y. Y.; Wang Z. Q.; Liu P.; Liu C. X.; Qiu J. H.; Zhang Y. G. Superelastic and large-range pressure sensor with hollow-sphere architectures for wearable electronic skin. Smart Mater. Struct., 2020, 29, 045014. doi:10.1088/1361-665x/ab73e1http://dx.doi.org/10.1088/1361-665x/ab73e1
Shao Y.; Luo C.; Deng B. W.; Yin B.; Yang M. B. Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy, 2020, 67, 104290. doi:10.1016/j.nanoen.2019.104290http://dx.doi.org/10.1016/j.nanoen.2019.104290
Wei X, Cao X, Wang Y, Zheng G, Dai K, Liu C, Shen C. Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor. Compos. Sci. Technol., 2017, 149, 166-177. doi:10.1016/j.compscitech.2017.06.027http://dx.doi.org/10.1016/j.compscitech.2017.06.027
Fei Y, Chen F, Fang W, Xu L, Ruan S, Liu X, Zhong M, Kuang T. High-strength, flexible and cycling-stable piezo-resistive polymeric foams derived from thermoplastic polyurethane and multi-wall carbon nanotubes. Compos. B Eng., 2020, 199, 108279. doi:10.1016/j.compositesb.2020.108279http://dx.doi.org/10.1016/j.compositesb.2020.108279
Suo Q. Q.; Zhang J. Y.; Cheng J.; Shi L. Preparation, microstructure, and piezoresistive behavior of conductive nanocomposite foams based on poly(1-butene) and carbon black. Appl. Phys. A, 2017, 123, 54. doi:10.1007/s00339-016-0662-yhttp://dx.doi.org/10.1007/s00339-016-0662-y
Zhang H. M.; Zhang G. C.; Gao Q.; Zong M.; Wang M. Y.; Qin J. B. Electrically electromagnetic interference shielding microcellular composite foams with 3D hierarchical graphene-carbon nanotube hybrids. Compos. Part A Appl. Sci. Manuf., 2020, 130, 105773. doi:10.1016/j.compositesa.2020.105773http://dx.doi.org/10.1016/j.compositesa.2020.105773
Tewari A.; Gandla S.; Bohm S.; McNeill C. R.; Gupta D. Highly exfoliated MWNT-rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications. ACS Appl. Mater. Interfaces, 2018, 10, 5185-5195. doi:10.1021/acsami.7b15252http://dx.doi.org/10.1021/acsami.7b15252
Yu L. M.; Huang H. X. Temperature and shear dependence of rheological behavior for thermoplastic polyurethane nanocomposites with carbon nanofillers. Polymer, 2022, 247, 124791. doi:10.1016/j.polymer.2022.124791http://dx.doi.org/10.1016/j.polymer.2022.124791
赵凌云, 黄汉雄, 罗杜宇, 苏逢春. 复合材料柔软性对倒金字塔微结构阵列传感器性能的影响. 高等学校化学学报, 2021, 42, 2953-2960. doi:10.7503/cjcu20210281http://dx.doi.org/10.7503/cjcu20210281
Feng D.; Liu P. J.; Wang Q. Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Compos. Part A Appl. Sci. Manuf., 2019, 124, 105463. doi:10.1016/j.compositesa.2019.05.031http://dx.doi.org/10.1016/j.compositesa.2019.05.031
Dong D, Ma J, Ma Z, Chen Y, Zhang H, Shao L, Gao J, Wei L, Wei A, Kang S. Flexible and lightweight microcellular RGO@Pebax composites with synergistic 3D conductive channels and microcracks for piezoresistive sensors. Compos. Part A Appl. Sci. Manuf., 2019, 123, 222-231. doi:10.1016/j.compositesa.2019.05.019http://dx.doi.org/10.1016/j.compositesa.2019.05.019
Xu D. W.; Wang Q. Q.; Feng D.; Liu P. J. Facile fabrication of multifunctional poly(ethylene-co-octene)/carbon nanotube foams based on tunable conductive network. Ind. Eng. Chem. Res., 2020, 59(5), 1934-1943. doi:10.1021/acs.iecr.9b06163http://dx.doi.org/10.1021/acs.iecr.9b06163
Xiao S. P.; Huang H. X. Generation of nanocellular TPU/reduced graphene oxide nanocomposite foams with high cell density by manipulating viscoelasticity. Polymer, 2019, 183, 121879. doi:10.1016/j.polymer.2019.121879http://dx.doi.org/10.1016/j.polymer.2019.121879
Cao Y. Y.; Pang Y. Y.; Dong X.; Wang D. J.; Zheng W. G. To clarify the resilience of PEBA/MWCNT foams via revealing the effect of the nanoparticle and the cellular structure. ACS Appl. Polym. Mater., 2021, 3(8), 3766-3775. doi:10.1021/acsapm.1c00307http://dx.doi.org/10.1021/acsapm.1c00307
0
浏览量
80
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构