浏览全部资源
扫码关注微信
1.四川大学 高分子材料工程国家重点实验室 高分子研究所 成都 610065
2.金发科技股份有限公司企业技术中心 广州 510000
3.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
[ "黄茜,女,1982年生. 四川大学高分子研究所特聘研究员. 2004年本科毕业于浙江大学高分子材料与工程专业,2006年硕士毕业于丹麦技术大学(DTU)高分子工程专业. 2007~2009年在上海从事化工工艺设计工作;2010年获欧盟玛丽居里ITN项目博士奖学金资助,于2013年在DTU化工系取得博士学位;之后在DTU工作至2020年,期间进行博士后深造,后任研究员;2021年3月加入四川大学高分子研究所,并成立独立课题组;主要研究方向包括高分子熔体和溶液的拉伸流变行为与分子结构的关系、缠结高分子液体的断裂机理以及分子链取向对聚合物机械性能的影响等." ]
[ "陈全,男,1981年8月生. 中国科学院长春应用化学研究所研究员. 大学本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造. 于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的Distinguished Young Rheologist Award (2~3人/年),2017年获国家自然科学基金优秀青年基金资助;2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年);2021年获美国流变学会梅茨纳奖(Metzner Award);目前担任美国流变学学会会刊《Journal of Rheology》,日本流变学会志《Nihon Reoroji Gakkaishi》和《高分子学报》编委. 主要研究方向为包括缔合高分子体系在内的多个复杂高分子体系的线性及非线性流变行为." ]
纸质出版日期:2023-02-20,
网络出版日期:2022-10-14,
收稿日期:2022-07-15,
录用日期:2022-09-09
扫 描 看 全 文
刘双,黄茜,陈全等.流变技术在高分子表征中的应用:拉伸流变测试[J].高分子学报,2023,54(02):286-302.
Liu Shuang,Huang Qian,Chen Quan,et al.Application of Extensional Rheology in Polymer Characterization[J].ACTA POLYMERICA SINICA,2023,54(02):286-302.
刘双,黄茜,陈全等.流变技术在高分子表征中的应用:拉伸流变测试[J].高分子学报,2023,54(02):286-302. DOI: 10.11777/j.issn1000-3304.2022.22245.
Liu Shuang,Huang Qian,Chen Quan,et al.Application of Extensional Rheology in Polymer Characterization[J].ACTA POLYMERICA SINICA,2023,54(02):286-302. DOI: 10.11777/j.issn1000-3304.2022.22245.
流变测试是与高分子加工和应用相关的重要表征手段. 尤其在纺丝、发泡、吹膜、吹塑等以拉伸流场占主导的高分子加工工艺中,高分子的拉伸流变行为对材料聚集态结构的形成起了决定性的作用,进而影响了产品最终的使役性能. 本综述第一部分介绍了拉伸流场的定义、拉伸流场的分类以及各自的特征;第二部分概述了目前商业拉伸流变仪的种类,并围绕其基本原理、测试技巧以及优缺点等内容展开讲解;第三部分介绍了拉伸流变的测试模式,并举例说明了各个模式的优势;第四部分列出了在拉伸测试中存在的常见问题,并给出了相应的解决方案和建议;最后对拉伸流变与其他表征联用技术的发展趋势进行了总结和展望.
Knowledge of elongational properties of polymeric materials is important in different polymer processing techniques
particularly the fiber-spinning
foaming
and blow-molding techniques where the extensional flow is dominant. In this review
we summarize the methods of measuring extensional rheology for polymer melts and solutions. We start with explaining the definition and classification of different extensional flow fields in Section 1. In Section 2 we introduce different types of extensional rheometers
including Goettfert Rheotens
Münstedt Tensile Rheometer
Rheometrics Melt Extensometer
Sentmanat Extensional Rheometer
Filament Stretching Rheometer
and Capillary Breakup Extensional Rheometer. Their designing principles
operation methods
and advantages/disadvantages are described. In Section 3
we briefly introduce the different modes of extensional measurements
such as constant extensional rate
constant stress
stress relaxation and large amplitude oscillation modes. Some examples are included to elucidate the advantages of each mode. In Section 4
we give some suggestions and solutions for minimizing experimental errors and pushing the experimental limits. Finally
we highlight the importance of combining extensional rheology with other techniques in revealing more dynamic features of polymeric materials under extensional flow.
流变学拉伸流场拉伸流变仪拉伸测试
RheologyExtensional flow fieldExtensional rheometerExtensional rheology measurement
Tadmor Z.; Gogos C. G. Principles of polymer processing. 2nd ed. Hoboken, JerseyNew: John Wiley & Sons 2013.
Kaneda, I. Rheology control agents for cosmetics. In: Rheology of Biological Soft Matter. Tokyo: Springer, 2017. 295-321. doi:10.1007/978-4-431-56080-7_11http://dx.doi.org/10.1007/978-4-431-56080-7_11
Eley R. R. Applied rheology and architectural coating performance. J. Coat. Technol. Res., 2019, 16(2), 263-305. doi:10.1007/s11998-019-00187-5http://dx.doi.org/10.1007/s11998-019-00187-5
刘双, 曹晓, 张嘉琪, 韩迎春, 赵欣悦, 陈全. 流变技术在高分子表征中的应用:如何正确地进行剪切流变测试. 高分子学报, 2021, 52(4): 406-422. doi:10.11777/j.issn1000-3304.2020.20230http://dx.doi.org/10.11777/j.issn1000-3304.2020.20230
Bird R. B.; Armstrong R. C.; Hassager O. Dynamics of Polymeric Liquids. Vol. 1, 2nd: Fluid Mechanics. New York: John Wiley and Sons, 1987.
Román Marín J. M.; Huusom J. K.; Alvarez N. J.; Huang Q.; Rasmussen H. K.; Bach A.; Skov A. L.; Hassager O. A control scheme for filament stretching rheometers with application to polymer melts. J. Non Newton. Fluid Mech., 2013, 194, 14-22. doi:10.1016/j.jnnfm.2012.10.007http://dx.doi.org/10.1016/j.jnnfm.2012.10.007
Watanabe H.; Matsumiya Y.; Inoue T. Dielectric and viscoelastic relaxation of highly entangled star polyisoprene: Quantitative test of tube dilation model. Macromolecules, 2002, 35(6), 2339-2357. doi:10.1021/ma011782zhttp://dx.doi.org/10.1021/ma011782z
Yoshida H.; Adachi K.; Watanabe H.; Kotaka T. Dielectric normal mode process of star-shaped polyisoprenes. Polym. J., 1989, 21(11), 863-872. doi:10.1295/polymj.21.863http://dx.doi.org/10.1295/polymj.21.863
Trouton F. T. On the coefficient of viscous traction and its relation to that of viscosity. Proc. Royal Soc. A Math. Phys. Eng. Sci., 1906, 77, 426-440. doi:10.1098/rspa.1906.0038http://dx.doi.org/10.1098/rspa.1906.0038
Huang Q. When polymer chains are highly aligned: a perspective on extensional rheology. Macromolecules, 2022, 55(3), 715-727. doi:10.1021/acs.macromol.1c02262http://dx.doi.org/10.1021/acs.macromol.1c02262
Costanzo S.; Huang Q.; Ianniruberto G.; Marrucci G.; Hassager O.; Vlassopoulos D. Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements. Macromolecules, 2016, 49(10), 3925-3935. doi:10.1021/acs.macromol.6b00409http://dx.doi.org/10.1021/acs.macromol.6b00409
Meiβner J. Dehnungsverhalten von polyäthylen-schmelzen. Rheol. Acta, 1971, 10(2), 230-242. doi:10.1007/bf02040447http://dx.doi.org/10.1007/bf02040447
Meissner J.; Hostettler J. A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol. Acta, 1994, 33(1), 1-21. doi:10.1007/bf00453459http://dx.doi.org/10.1007/bf00453459
Münstedt H. New universal extensional rheometer for polymer melts. measurements on a polystyrene sample. J. Rheol., 1979, 23(4), 421-436. doi:10.1122/1.549544http://dx.doi.org/10.1122/1.549544
Sentmanat M. L. Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta, 2004, 43(6), 657-669. doi:10.1007/s00397-004-0405-4http://dx.doi.org/10.1007/s00397-004-0405-4
Hodder P.; Franck A. A new tool for measuring extensional viscosity. J. Ann. Trans. Nord. Rheol. Soc, 2005, 13, 227-232.
Li B. K.; Yu W.; Cao X.; Chen Q. Horizontal extensional rheometry (HER) for low viscosity polymer melts. J. Rheol., 2020, 64(1), 177-190. doi:10.1122/1.5134532http://dx.doi.org/10.1122/1.5134532
Matta J.; Tytus R. Liquid stretching using a falling cylinder. J. Non Newton. Fluid Mech., 1990, 35(2-3), 215-229. doi:10.1016/0377-0257(90)85050-9http://dx.doi.org/10.1016/0377-0257(90)85050-9
Tirtaatmadja V.; Sridhar T. A filament stretching device for measurement of extensional viscosity. J. Rheol., 1993, 37(6), 1081-1102. doi:10.1122/1.550372http://dx.doi.org/10.1122/1.550372
Auhl D.; Hoyle D. M.; Hassell D.; Lord T. D.; Harlen O. G.; Mackley M. R.; McLeish T. C. B. Cross-slot extensional rheometry and the steady-state extensional response of long chain branched polymer melts. J. Rheol., 2011, 55(4), 875-900. doi:10.1122/1.3589972http://dx.doi.org/10.1122/1.3589972
Miller E.; Clasen C.; Rothstein J. P. The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements. Rheol. Acta, 2009, 48, 625-639. doi:10.1007/s00397-009-0357-9http://dx.doi.org/10.1007/s00397-009-0357-9
Zhang D. Y.; Calabrese M. A. Temperature-controlled dripping-onto-substrate (DoS) extensional rheometry of polymer micelle solutions. Soft Matter., 2022, 18(20), 3993-4008. doi:10.1039/d2sm00377ehttp://dx.doi.org/10.1039/d2sm00377e
Wagner M. H.; Bernnat A.; Schulze V. The rheology of the rheotens test. J. Rheol., 1998, 42(4), 917-928. doi:10.1122/1.550907http://dx.doi.org/10.1122/1.550907
Münstedt H.; Schwarzl F. R. Deformation and Flow of Polymeric Materials. Berlin, Heidelberg: Springer, 2014. doi:10.1007/978-3-642-55409-4http://dx.doi.org/10.1007/978-3-642-55409-4
Aho J.; Boetker J. P.; Baldursdottir S.; Rantanen J. Rheology as a tool for evaluation of melt processability of innovative dosage forms. Int. J. Pharm., 2015, 494(2), 623-642. doi:10.1016/j.ijpharm.2015.02.009http://dx.doi.org/10.1016/j.ijpharm.2015.02.009
Huang Q.; Mangnus M.; Alvarez N. J.; Koopmans R.; Hassager O. A new look at extensional rheology of low-density polyethylene. Rheol Acta, 2016, 55(5), 343-350. doi:10.1007/s00397-016-0921-zhttp://dx.doi.org/10.1007/s00397-016-0921-z
Nielsen J. K.; Rasmussen H. K.; Hassager O. Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension. J. Rheol., 2008, 52(4), 885-899. doi:10.1122/1.2930872http://dx.doi.org/10.1122/1.2930872
Robertson B. P.; Calabrese M. A. Evaporation-controlled dripping-onto-substrate (DoS) extensional rheology of viscoelastic polymer solutions. Sci. Rep., 2022, 12, 4697. doi:10.1038/s41598-022-08448-xhttp://dx.doi.org/10.1038/s41598-022-08448-x
Huang Q.; Ahn J.; Parisi D.; Chang T.; Hassager O.; Panyukov S.; Rubinstein M.; Vlassopoulos D. Unexpected stretching of entangled ring macromolecules. Phys. Rev. Lett., 2019, 122(20), 208001. doi:10.1103/physrevlett.122.208001http://dx.doi.org/10.1103/physrevlett.122.208001
Alvarez N. J.; Marín J. M. R.; Huang Q.; Michelsen M. L.; Hassager O. Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts. Phys. Rev. Lett., 2013, 110(16), 168301. doi:10.1103/physrevlett.110.168301http://dx.doi.org/10.1103/physrevlett.110.168301
Huang Q.; Agostini S.; Hengeller L.; Shivokhin M.; Alvarez N. J.; Hutchings L. R.; Hassager O. Dynamics of star polymers in fast extensional flow and stress relaxation. Macromolecules, 2016, 49(17), 6694-6699. doi:10.1021/acs.macromol.6b01348http://dx.doi.org/10.1021/acs.macromol.6b01348
Bejenariu A. G.; Rasmussen H. K.; Skov A. L.; Hassager O.; Frankaer S. M. Large amplitude oscillatory extension of soft polymeric networks. Rheol. Acta, 2010, 49(8), 807-814. doi:10.1007/s00397-010-0464-7http://dx.doi.org/10.1007/s00397-010-0464-7
Yu, K. J.; Marín, J. M. R.; Rasmussen, H. K.; Hassager, O. 3D modeling of dual wind-up extensional rheometers. J. Non. Newton. Fluid. Mech., 2010, 165(1-2), 14-23. doi:10.1016/j.jnnfm.2009.08.006http://dx.doi.org/10.1016/j.jnnfm.2009.08.006
Lentzakis H.; Vlassopoulos D.; Read D. J.; Lee H.; Chang T.; Driva P.; Hadjichristidis N. Uniaxial extensional rheology of well-characterized comb polymers. J. Rheol., 2013, 57(2), 605-625. doi:10.1122/1.4789443http://dx.doi.org/10.1122/1.4789443
Wang Y. Y.; Wang S. Q. Rupture in rapid uniaxial extension of linear entangled melts. Rheol Acta, 2010, 49(11), 1179-1185. doi:10.1007/s00397-010-0491-4http://dx.doi.org/10.1007/s00397-010-0491-4
Wingstrand S. L.; Imperiali L.; Stepanyan R.; Hassager O. Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene. Polymer, 2018, 136, 215-223. doi:10.1016/j.polymer.2017.12.042http://dx.doi.org/10.1016/j.polymer.2017.12.042
Zhu X. Y.; Wang S. Q. Mechanisms for different failure modes in startup uniaxial extension: tensile (rupture-like) failure and necking. J. Rheol., 2013, 57(1), 223-248. doi:10.1122/1.4764081http://dx.doi.org/10.1122/1.4764081
Hoyle D. M.; Huang Q.; Auhl D.; Hassell D.; Rasmussen H. K.; Skov A. L.; Harlen O. G.; Hassager O.; McLeish T. C. B. Transient overshoot extensional rheology of long-chain branched polyethylenes: Experimental and numerical comparisons between filament stretching and cross-slot flow. J. Rheol., 2013, 57(1), 293-313. doi:10.1122/1.4767982http://dx.doi.org/10.1122/1.4767982
Liu D.; Tian N.; Cui K. P.; Zhou W. Q.; Li X. Y.; Li L. B. Correlation between flow-induced nucleation morphologies and strain in polyethylene: from uncorrelated oriented point-nuclei, scaffold-network, and microshish to shish. Macromolecules, 2013, 46(9), 3435-3443. doi:10.1021/ma400024mhttp://dx.doi.org/10.1021/ma400024m
Huang Q.; Madsen J.; Yu L. Y.; Borger A.; Johannsen S. R.; Mortensen K.; Hassager O. Highly anisotropic glassy polystyrenes are flexible. ACS Macro. Lett., 2018, 7(9), 1126-1130. doi:10.1021/acsmacrolett.8b00485http://dx.doi.org/10.1021/acsmacrolett.8b00485
Tabuteau H.; Mora S.; Porte G.; Abkarian M.; Ligoure C. Microscopic mechanisms of the brittleness of viscoelastic fluids. Phys. Rev. Lett., 2009, 102(15), 155501. doi:10.1103/physrevlett.102.155501http://dx.doi.org/10.1103/physrevlett.102.155501
0
浏览量
377
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构