浏览全部资源
扫码关注微信
上海交通大学化学化工学院 上海 200240
E-mail: yfzhou@sjtu.edu.cn
纸质出版日期:2023-05-20,
网络出版日期:2023-02-03,
收稿日期:2022-11-04,
录用日期:2022-12-22
扫 描 看 全 文
张常旭,潘辉,周永丰.交替共聚物纳米花的自组装及在单颗粒表面增强拉曼散射检测中的应用[J].高分子学报,2023,54(05):687-696.
Zhang Chang-xu,Pan Hui,Zhou Yong-feng.Self-assembly of Alternating Copolymer Nanoflowers and Their Application in Single-particle Surface-enhanced Raman Scattering Detection[J].ACTA POLYMERICA SINICA,2023,54(05):687-696.
张常旭,潘辉,周永丰.交替共聚物纳米花的自组装及在单颗粒表面增强拉曼散射检测中的应用[J].高分子学报,2023,54(05):687-696. DOI: 10.11777/j.issn1000-3304.2022.22371.
Zhang Chang-xu,Pan Hui,Zhou Yong-feng.Self-assembly of Alternating Copolymer Nanoflowers and Their Application in Single-particle Surface-enhanced Raman Scattering Detection[J].ACTA POLYMERICA SINICA,2023,54(05):687-696. DOI: 10.11777/j.issn1000-3304.2022.22371.
纳米花(NFs)具有多级的结构,表现出各种各样的功能和应用,因此受到了广泛的关注. 然而,大多数的纳米花都是通过无机化合物合成的,关于有机聚合物纳米花的报道非常有限. 本文报道了一种结晶性的交替共聚物P(DHB-
a
-DDT),它可以通过溶液自组装来大量制备聚合物纳米花. 纳米花的尺寸可以通过控制聚合物浓度的方法调控,其调控范围为3.3 ~12.6 μm. 进一步地,通过聚合物上的硫与银离子的配位然后原位还原,可以制备负载Ag颗粒的纳米花(AgNP-NFs). 虽然AgNP-NFs中的Ag含量只有11.9 wt%,但是AgNP-NFs表现出优异的表面增强拉曼散射(SERS)性能,其检测限为1×10
-8
mo/L,这比从AgNP-NFs上剥离的Ag颗粒低了2个数量级. 同时,AgNP-NFs可用于单颗粒SERS检测,这极大地降低了检测成本. 这些发现扩展了交替共聚物的自组装行为,丰富了聚合物纳米花的类型和功能.
Nanoflowers (NFs) have received much attention due to their hierarchical structures and diverse functions or applications. However
up to now
most reported NFs are synthesized based on inorganic compounds
and the reports on organic polymeric NFs are greatly limited. Here
a crystalline alternating copolymer P(DHB-
a
-DDT) is synthesized by the click polymerization of 1
3-butadiene diepoxide (BDE) and 1
10-decanedithiol (DDT). It is found that P(DHB-
a
-DDT) could self-assemble into NFs on a large scale by cooling in a mixed solvent (DMF/MeCN = 1/1
V
/
V
) from 80 ℃ to room temperature. The formation mechanism demonstrated that NFs are porous and composed of nanosheets. The size of NFs could be tuned from 3.3 μm to 12.6 μm by changing the polymer concentration. The self-assembled NFs can be controlled by the factors of polymer concentration
the volume ratio of DMF/MeCN
type of precipitant and polymer composition. Further
the functionalization of NFs is easy to carry out. For example
NFs loaded with Ag particles (AgNP-NFs) are prepared readily by the coordination of sulfur and silver ions followed with
in situ
reduction. The SEM image show that AgNP-NFs maintained the flower-like morphology
and there are many small Ag nanoparticles (AgNPs) on the surface and in the cavity of AgNP-NFs with the average diameter of (88.4±34.5) nm. As a result
AgNP-NFs with low Ag content of 11.9 wt% exhibit enhanced surface-enhanced Raman scattering (SERS) with a detection limit of 1×10
-8
mol/L using R6G as the probe molecule
which is two orders of magnitude lower than that of exfoliated AgNPs. Furthermore
AgNP-NFs can be used in single-particle SERS detection with high sensitivity and low detection cost because of their micron size
good dispersibility and porous structure. These findings extend the self-assembled behavior of alternating copolymers (ACPs) and enrich the types of polymeric NFs as well as their functions.
纳米花交替共聚物自组装表面增强拉曼散射
NanoflowersAlternating copolymerSelf-assemblySurface-enhanced Raman scattering
Sun H.; Du J. Intramolecular cyclization-induced crystallization-driven self-assembly of an amorphous poly(amic acid). Macromolecules, 2020, 53(24), 11033-11039. doi:10.1021/acs.macromol.0c02186http://dx.doi.org/10.1021/acs.macromol.0c02186
Xu Z.; Zhuang X.; Yang C.; Cao J.; Yao Z.; Tang Y.; Jiang J.; Wu D.; Feng X. Nitrogen‐doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater., 2016, 28(10), 1981-1987. doi:10.1002/adma.201505131http://dx.doi.org/10.1002/adma.201505131
Liu Y.; Ji X.; He Z. Organic-inorganic nanoflowers: from design strategy to biomedical applications. Nanoscale, 2019, 11(37), 17179-17194. doi:10.1039/c9nr05446dhttp://dx.doi.org/10.1039/c9nr05446d
Kamil M. P.; Ko Y. G. Electrochemically stable and catalytically active coatings based on self-assembly of protein-inorganic nanoflowers on plasma-electrolyzed platform. ACS Appl. Mater. Interfaces, 2021, 13(33), 39854-39867. doi:10.1021/acsami.1c09787http://dx.doi.org/10.1021/acsami.1c09787
Guan H.; Du X.; Yi Y.; Kang X.; Li K.; Pei X.; Zhao Z.; Zhang J.; Li D. Minimal TiO2 coupled with conductive polymer-stimulated synergistic effect on fast and reversible sodium-ion storage for bismuth sulfide. ACS Appl. Mater. Interfaces, 2021, 13(46), 55051-55059. doi:10.1021/acsami.1c16316http://dx.doi.org/10.1021/acsami.1c16316
Yang H.; Guo H.; Li X.; Ren W.; Song R. Regulation effects of Co2+ on the construction of a Cu-Ni(OH)2@CoO nanoflower cluster heterojunction: a critical factor in obtaining a high-performance battery-type hybrid supercapacitor. Nanoscale, 2021, 13(43), 18182-18191. doi:10.1039/d1nr04668chttp://dx.doi.org/10.1039/d1nr04668c
Zhao S.; Long Y.; Su Y.; Wang S.; Zhang Z.; Zhang X. Cobalt‐enhanced mass transfer and catalytic production of sulfate radicals in mof‐derived CeO2·Co3O4 nanoflowers for efficient degradation of antibiotics. Small, 2021, 17(43), 2101393.
Ge J.; Lei J.; Zare R. N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol., 2012, 7(7), 428-432. doi:10.1038/nnano.2012.80http://dx.doi.org/10.1038/nnano.2012.80
Guo L.; Bai X.; Xue H.; Sun J.; Song T.; Zhang S.; Qin L.; Huang K.; He F.; Wang Q. Mof-derived hierarchical 3D bi-doped CoP nanoflower eletrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Chem. Commun., 2020, 56(56), 7702-7705. doi:10.1039/c9cc09684ahttp://dx.doi.org/10.1039/c9cc09684a
Hu Y.; Gao X.; Yu L.; Wang Y.; Ning J.; Xu S.; Lou X. W. Carbon‐coated cds petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem. Int. Ed., 2013, 52(21), 5636-5639. doi:10.1002/anie.201301709http://dx.doi.org/10.1002/anie.201301709
Liu K.; Bai Y.; Zhang L.; Yang Z.; Fan Q.; Zheng H.; Yin Y.; Gao C. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for sers analysis. Nano Lett., 2016, 16(6), 3675-3681. doi:10.1021/acs.nanolett.6b00868http://dx.doi.org/10.1021/acs.nanolett.6b00868
Zhou C.; Han J.; Guo R. Controllable synthesis of polyaniline multidimensional architectures: from plate-like structures to flower-like superstructures. Macromolecules, 2008, 41(17), 6473-6479. doi:10.1021/ma800500uhttp://dx.doi.org/10.1021/ma800500u
Matsushima Y.; Nishiyabu R.; Takanashi N.; Haruta M.; Kimura H.; Kubo Y. Boronate self-assemblies with embedded Au nanoparticles: preparation, characterization and their catalytic activities for the reduction of nitroaromatic compounds. J. Mater. Chem., 2012, 22(45), 24124-24131. doi:10.1039/c2jm34797khttp://dx.doi.org/10.1039/c2jm34797k
Zhang K.; Geissler A.; Chen X.; Rosenfeldt S.; Yang Y.; Förster S.; Müller-Plathe F. Polymeric flower-like microparticles from self-assembled cellulose stearoyl esters. ACS Macro Lett., 2015, 4(2), 214-219. doi:10.1021/mz500788ehttp://dx.doi.org/10.1021/mz500788e
Cai B.; Zhang S.; Zhou Y. Green stereoregular polymerization of poly(methyl methacrylate)s through vesicular catalysis. CCS Chem., 2022, 4(4), 1337-1346. doi:10.31635/ccschem.021.202101011http://dx.doi.org/10.31635/ccschem.021.202101011
Zuo Q.; Feng K.; Zhong J.; Mai Y.; Zhou Y. Single-metal-atom polymeric unimolecular micelles for switchable photocatalytic H2 evolution. CCS Chem., 2020, 3(7), 1963-1971. doi:10.31635/ccschem.020.202000486http://dx.doi.org/10.31635/ccschem.020.202000486
戚美微, 刘勇, 周永丰. Janus超支化超分子聚合物的构筑及电化学响应性自组装行为研究. 化学学报, 2020, 78(6), 528-533. doi:10.6023/A20040121http://dx.doi.org/10.6023/A20040121
Chen Y. Q.; Jin B. X.; Li Q.; Luo Y. J.; Chi S. M.; Li X. Y. Precise supramolecular polymerization of liquid crystalline block copolymer initiated by heavy metallic salts. Chinese J. Polym. Sci., 2022, 40(6), 624-630. doi:10.1007/s10118-022-2715-3http://dx.doi.org/10.1007/s10118-022-2715-3
戚美微, 黄卫, 肖谷雨, 朱新远, 高超, 周永丰. 超支化聚合物的合成和自组装研究. 高分子学报, 2017, (2), 214-228. doi:10.11777/j.issn1000-3304.2017.16324http://dx.doi.org/10.11777/j.issn1000-3304.2017.16324
李玉莲, 宋东坡, 李悦生. 三嵌段共聚物刷诱导乳液自组装制备响应性多孔结构色微球. 高分子学报, 2021, 52(12), 1591-1602. doi:10.11777/j.issn1000-3304.2021.21146http://dx.doi.org/10.11777/j.issn1000-3304.2021.21146
姚灏, 王景霞, 田威. 超分子拓扑高分子: 合成, 组装及功能. 高分子学报, 2021, 52(6), 578-601. doi:10.11777/j.issn1000-3304.2021.21010http://dx.doi.org/10.11777/j.issn1000-3304.2021.21010
Chen J.; Yu C.; Shi Z.; Yu S.; Lu Z.; Jiang W.; Zhang M.; He W.; Zhou Y.; Yan D. Ultrathin alternating copolymer nanotubes with readily tunable surface functionalities. Angew. Chem. Int. Ed., 2015, 54(12), 3621-3625. doi:10.1002/anie.201408290http://dx.doi.org/10.1002/anie.201408290
Li C.; Chen C.; Li S.; Rasheed T.; Huang P.; Huang T.; Zhang Y.; Huang W.; Zhou Y. Self-assembly and functionalization of alternating copolymer vesicles. Polym. Chem., 2017, 8(32), 4688-4695. doi:10.1039/c7py00908ahttp://dx.doi.org/10.1039/c7py00908a
Shao Q.; Zhang S.; Hu Z.; Zhou Y. Multimode self‐oscillating vesicle transformers. Angew. Chem. Int. Ed., 2020, 59(39), 17125-17129. doi:10.1002/anie.202007840http://dx.doi.org/10.1002/anie.202007840
Huang P.; Qi M.; Chen C.; Xu F.; Li S.; Xu Q.; Pan H.; Wang Y.; Yu C.; Zhang S.; Zhou Y. Asymmetric vesicles self-assembled by amphiphilic sequence-controlled polymers. ACS Macro Lett., 2021, 10(7), 894-900. doi:10.1021/acsmacrolett.1c00301http://dx.doi.org/10.1021/acsmacrolett.1c00301
Zhang Y. L.; Li C. L.; Rasheed T.; Huang P.; Zhou Y. F. Synthesis, self-assembly and electrode application of mussel-inspired alternating copolymers. Chinese J. Polym. Sci., 2018, 36(8), 897-904. doi:10.1007/s10118-018-2151-6http://dx.doi.org/10.1007/s10118-018-2151-6
Yin R.; Sahoo D.; Xu F.; Huang W.; Zhou Y. Scalable preparation of crystalline nanorods through sequential polymerization-induced and crystallization-driven self-assembly of alternating copolymers. Polym. Chem., 2020, 11(13), 2312-2317. doi:10.1039/d0py00093khttp://dx.doi.org/10.1039/d0py00093k
Li C.; Rasheed T.; Tian H.; Huang P.; Mai Y.; Huang W.; Zhou Y. Solution self-assembly of an alternating copolymer toward hollow carbon nanospheres with uniform micropores. ACS Macro Lett., 2019, 8(3), 331-336. doi:10.1021/acsmacrolett.9b00009http://dx.doi.org/10.1021/acsmacrolett.9b00009
Xu Q.; Huang T.; Li S.; Li K.; Li C.; Liu Y.; Wang Y.; Yu C.; Zhou Y. Emulsion‐assisted polymerization‐induced hierarchical self‐assembly of giant sea urchin‐like aggregates on a large scale. Angew. Chem. Int. Ed., 2018, 57(27), 8043-8047. doi:10.1002/anie.201802833http://dx.doi.org/10.1002/anie.201802833
Zhang C.; Pan H.; Chen C.; Zhou Y. Regioisomer-directed self-assembly of alternating copolymers for highly enhanced photocatalytic H2 evolution. ACS Macro Lett., 2022, 11(4), 434-440. doi:10.1021/acsmacrolett.2c00035http://dx.doi.org/10.1021/acsmacrolett.2c00035
Xu Q.; Li S.; Qi M.; Gao J.; Chen C.; Huang P.; Wang Y.; Yu C.; Huang W.; Zhou Y. Membrane-bound inward-growth of artificial cytoskeletons and their selective disassembly. Angew. Chem. Int. Ed., 2022, 61(26), e202204440. doi:10.1002/anie.202204440http://dx.doi.org/10.1002/anie.202204440
Zhang M.; Zuo Q.; Wang L.; Yu S.; Mai Y.; Zhou Y. Poly(ionic liquid)-based polymer composites as high-performance solid-state electrolytes: Benefiting from nanophase separation and alternating polymer architecture. Chem. Commun., 2020, 56(57), 7929-7932. doi:10.1039/d0cc03281fhttp://dx.doi.org/10.1039/d0cc03281f
Sha X.; Zhang C.; Qi M.; Zheng L.; Cai B.; Chen F.; Wang Y.; Zhou Y. Mussel-inspired alternating copolymer as a high-performance adhesive material both at dry and under-seawater conditions. Macromol. Rapid Commun., 2020, 41(10), 2000055. doi:10.1002/marc.202000055http://dx.doi.org/10.1002/marc.202000055
Kim J.; Sim K.; Cha S.; Oh J. W.; Nam J. M. Single-particle analysis on plasmonic nanogap systems for quantitative sers. J. Raman Spectrosc., 2021, 52(2), 375-385. doi:10.1002/jrs.6030http://dx.doi.org/10.1002/jrs.6030
Sonntag M. D.; Klingsporn J. M.; Zrimsek A. B.; Sharma B.; Ruvuna L. K.; Van Duyne R. P. Molecular plasmonics for nanoscale spectroscopy. Chem. Soc. Rev., 2014, 43(4), 1230-1247. doi:10.1039/c3cs60187khttp://dx.doi.org/10.1039/c3cs60187k
Visaveliya N. R.; Mazetyte-Stasinskiene R.; Köhler J. M. Stationary, continuous, and sequential surface-enhanced raman scattering sensing based on the nanoscale and microscale polymer-metal composite sensor particles through microfluidics. Adv. Opt. Mater., 2022, 10(7), 2102757. doi:10.1002/adom.202102757http://dx.doi.org/10.1002/adom.202102757
Heeley E. L.; Hughes D. J.; El Aziz Y.; Taylor P. G.; Bassindale A. R. Linear long alkyl chain substituted poss cages: The effect of alkyl chain length on the self-assembled packing morphology. Macromolecules, 2013, 46(12), 4944-4954. doi:10.1021/ma400635ehttp://dx.doi.org/10.1021/ma400635e
El Aziz Y.; Bassindale A. R.; Taylor P. G.; Stephenson R. A.; Hursthouse M. B.; Harrington R. W.; Clegg W. X-ray crystal structures, packing behavior, and thermal stability studies of a homologous series of n-alkyl-substituted polyhedral oligomeric silsesquioxanes. Macromolecules, 2013, 46(3), 988-1001. doi:10.1021/ma302229vhttp://dx.doi.org/10.1021/ma302229v
Li S. L.; Yu C. Y.; Zhou Y. F. Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations. Sci. China Chem., 2019, 62, 226-237. doi:10.1007/s11426-018-9360-3http://dx.doi.org/10.1007/s11426-018-9360-3
Ren W.; Yang Y.; Yang J.; Duan H.; Zhao G.; Liu Y. Multifunctional and corrosion resistant poly(phenylene sulfide)/ag composites for electromagnetic interference shielding. Chem. Eng. J., 2021, 415, 129052. doi:10.1016/j.cej.2021.129052http://dx.doi.org/10.1016/j.cej.2021.129052
Black J. R.; Champness N. R.; Levason W.; Reid G. Unique structural features in silver (i) dithioether complexes: The single-crystal structures of [Agn(PhSCH2CH2CH2SPh)2n] (BF4)n·0.5nH2O and [Agn(MeSCH2CH2CH2SMe)n] (BF4)n. J. Chem. Soc., Chem. Commun., 1995, (12), 1277-1278. doi:10.1039/c39950001277http://dx.doi.org/10.1039/c39950001277
Schlücker S. Surface‐enhanced raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed., 2014, 53(19), 4756-4795. doi:10.1002/anie.201205748http://dx.doi.org/10.1002/anie.201205748
Nie S.; Emory S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303), 1102-1106. doi:10.1126/science.275.5303.1102http://dx.doi.org/10.1126/science.275.5303.1102
Zhang Q.; Li W.; Moran C.; Zeng J.; Chen J.; Wen L. P.; Xia Y. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc., 2010, 132(32), 11372-11378. doi:10.1021/ja104931hhttp://dx.doi.org/10.1021/ja104931h
Wang H.; Halas N. J. Mesoscopic Au “meatball” particles. Adv. Mater., 2008, 20(4), 820-825. doi:10.1002/adma.200701293http://dx.doi.org/10.1002/adma.200701293
You H.; Ji Y.; Wang L.; Yang S.; Yang Z.; Fang J.; Song X.; Ding B. Interface synthesis of gold mesocrystals with highly roughened surfaces for surface-enhanced Raman spectroscopy. J. Mater. Chem., 2012, 22(5), 1998-2006. doi:10.1039/c1jm13211chttp://dx.doi.org/10.1039/c1jm13211c
0
浏览量
60
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构