浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
E-mail: sjliu@ciac.ac.cn
xhwang@ciac.ac.cn
纸质出版日期:2023-04-20,
网络出版日期:2022-12-15,
收稿日期:2022-11-16,
录用日期:2022-11-25
扫 描 看 全 文
卓春伟,范培鑫,刘顺杰等.微量酸酐诱导增强的二氧化碳/环氧氯丙烷共聚反应[J].高分子学报,2023,54(04):476-486.
Zhuo Chun-wei,Fan Pei-xin,Liu Shun-jie,et al.Trace Anhydride-enhanced Carbon Dioxide/Epichlorohydrin Copolymerization[J].ACTA POLYMERICA SINICA,2023,54(04):476-486.
卓春伟,范培鑫,刘顺杰等.微量酸酐诱导增强的二氧化碳/环氧氯丙烷共聚反应[J].高分子学报,2023,54(04):476-486. DOI: 10.11777/j.issn1000-3304.2022.22391.
Zhuo Chun-wei,Fan Pei-xin,Liu Shun-jie,et al.Trace Anhydride-enhanced Carbon Dioxide/Epichlorohydrin Copolymerization[J].ACTA POLYMERICA SINICA,2023,54(04):476-486. DOI: 10.11777/j.issn1000-3304.2022.22391.
环氧氯丙烷(ECH)与二氧化碳(CO
2
)的共聚反应产物具有可修饰的C―Cl键,是实现聚碳酸酯功能化的有效途径,然而该反应一直受制于较长的诱导期. 本文提出了一种酸酐诱导增强共聚反应活性的策略,即在CO
2
/ECH共聚体系中引入微量环状酸酐以缩短诱导期,提高反应活性. 以锌钴氰化络合物(DMC)催化剂为例,在CO
2
/ECH共聚体系中仅加入0.1 mol%的不同种类环状酸酐,ECH转化率可达到23.6%~83.6% (40 ℃,24 h),相比于未添加酸酐体系的低转化率(2.6%),反应活性显著增强. 尤其是5-降冰片烯-2
3-二羧酸酐诱导的CO
2
/ECH共聚体系显示出最高的活性增强效应,在28 h内ECH转化率可达98.8%,催化效率为430 g polymer/g cat.,并保持91.3 wt%的聚合物选择性,进而制备出碳酸酯单元含量为68.2%、分子量为16.7 kg/mol的CO
2
基聚碳酸酯. 进一步采用在线红外等光谱分析技术,证实环状酸酐优先与ECH发生共聚反应生成聚酯活性种是缩短诱导期并产生活性增强效应的根本原因. 综上所述,本文提出了一种具有实用价值的微量酸酐诱导活性增强方法,实现了CO
2
与ECH的高效共聚反应,为功能化二氧化碳基碳酸酯的高效合成提供了一个新思路.
The copolymerization product of epichlorohydrin (ECH) and carbon dioxide (CO
2
) has the modifiable C―Cl bond
which is an effective way to functionalize polycarbonate. However
the reaction has been limited by a long induction period. Herein
we propose a strategy to enhance the copolymerization activity induced by trace anhydride
i.e.
introducing trace cyclic anhydride into the CO
2
/ECH copolymerization system to shorten the induction period and improve the reaction activity. Taking zinc-cobalt cyanide complex (DMC) catalyst as an example
the ECH conversion reached 23.6%-83.6% (40 ℃
24 h) with 0.1 mol% of different cyclic anhydrides in the CO
2
/ECH copolymerization
and the reactivity was significantly enhanced compared to the low conversion (2.6%) in the system without the addition of anhydride. In particular
the CO
2
/ECH copolymerization system induced by 5-norbornene-2
3-dicarboxylic anhydride showed the highest activity-enhancing effect
achieving 98.8% ECH conversion in 28 h with a catalytic efficiency of 430 g polymer/g cat. and maintaining 91.3 wt% polymer selectivity. Meanwhile
CO
2
-based polycarbonate with a CU content of 68.2% and molecular weight of 16.7 kg/mol was effectively prepared. Further
it was confirmed that the preferential copolymerization of cyclic anhydride with ECH to produce polyester active species was the root cause of the shortened induction period and the enhanced activity effect by using online infrared and other spectroscopic techniques. In summary
this paper presents a practical method of anhydride-induced activity enhancement to achieve efficient copolymerization of CO
2
and ECH
which provides a new idea for the efficient synthesis of functionalized CO
2
-based polycarbonate.
二氧化碳环氧氯丙烷环状酸酐诱导期活性增强
Carbon dioxideEpichlorohydrinCyclic anhydrideInduction periodActivity-enhancing
Wang X. H. Biodegradable polymers, history tells polymer science's fortune. Chinese J. Polym. Sci., 2022, 40, 431-432. doi:10.1007/s10118-022-2737-xhttp://dx.doi.org/10.1007/s10118-022-2737-x
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50, 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Hepburn C.; Adlen E.; Beddington J.; Carter E. A.; Fuss S.; Mac Dowell N.; Minx J. C.; Smith P.; Williams C. K. The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575, 87-97. doi:10.1038/s41586-019-1681-6http://dx.doi.org/10.1038/s41586-019-1681-6
Inoue S.; Koinuma H.; Tsuruta T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part B: Polym. Lett., 1969, 7, 287-292. doi:10.1002/pol.1969.110070408http://dx.doi.org/10.1002/pol.1969.110070408
Moore D. R.; Cheng M.; Lobkovsky E. B.; Coates G. W. Electronic and steric effects on catalysts for CO2/polymerization/epoxide: Subtle modifications resulting in superior activities. Angew. Chem. Int. Ed., 2002, 41, 2599-2601. doi:10.1002/1521-3773(20020715)41:14<2599::aid-anie2599>3.0.co;2-nhttp://dx.doi.org/10.1002/1521-3773(20020715)41:14<2599::aid-anie2599>3.0.co;2-n
Quan Z. L.; Wang X. H.; Zhao X. J.; Wang F. S. Copolymerization of CO2 and propylene oxide under rare earth ternary catalyst: design of ligand in yttrium complex. Polymer, 2003, 44, 5605-5610. doi:10.1016/s0032-3861(03)00561-5http://dx.doi.org/10.1016/s0032-3861(03)00561-5
Eberhardt R.; Allmendinger M.; Zintl M.; Troll C.; Luinstra G. A.; Rieger B. New zinc dicarboxylate catalysts for the CO2/propylene oxide copolymerization reaction: Activity enhancement through Zn (Ⅱ)-ethylsulfinate initiating groups. Macromol. Chem. Phys., 2004, 205, 42-47. doi:10.1002/macp.200350081http://dx.doi.org/10.1002/macp.200350081
Lee B. Y.; Kwon H. Y.; Lee S. Y.; Na S. J.; Han S. I.; Yun H. S.; Lee H.; Park Y. W. Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization. J. Am. Chem. Soc., 2005, 127, 3031-3037. doi:10.1021/ja0435135http://dx.doi.org/10.1021/ja0435135
Kember M. R.; Knight P. D.; Reung P. T. R.; Williams C. K. Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Angew. Chem. Int. Ed., 2009, 48, 931-933. doi:10.1002/anie.200803896http://dx.doi.org/10.1002/anie.200803896
曹晓瀚, 吕俊奇, 赵佳, 张成建, 孙悦, 虞卿磊, 侯家祥, 张兴宏. 氧化异丁烯与CO2共聚物的合成及其结构与性能. 高分子学报, 2022, 53, 1104-1111. doi:10.11777/j.issn1000-3304.2022.22109http://dx.doi.org/10.11777/j.issn1000-3304.2022.22109
Aida T.; Ishikawa M.; Inoue S. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules, 1986, 19, 8-13. doi:10.1021/ma00155a002http://dx.doi.org/10.1021/ma00155a002
周庆海, 贾凡, 曹瀚, 刘顺杰, 王献红, 王佛松. 二氧化碳与环氧化物的三元共聚反应动力学过程控制. 高分子学报, 2022, 53, 1365-1371. doi:10.11777/j.issn1000-3304.2022.22097http://dx.doi.org/10.11777/j.issn1000-3304.2022.22097
曹瀚, 巩如楠, 周振震, 王献红, 王佛松. 功能化二氧化碳基多元醇的精准合成. 高分子学报, 2021, 52, 1006-1014. doi:10.11777/j.issn1000-3304.2021.21056http://dx.doi.org/10.11777/j.issn1000-3304.2021.21056
Zhang R. Y.; Kuang Q. X.; Cao H.; Liu S. J.; Chen X. S.; Wang X. H.; Wang F. S. Unity makes strength: constructing polymeric catalyst for selective synthesis of CO2/epoxide copolymer. CCS Chem., 2022, DOI: 10.31635/ccschem.022.202201952.http://dx.doi.org/10.31635/ccschem.022.202201952.
Darensbourg D. J.; Frantz E. B. Manganese (Ⅲ) schiff base complexes: chemistry relevant to the copolymerization of epoxides and carbon dioxide. Inorg. Chem., 2007, 46, 5967-5978. doi:10.1021/ic7003968http://dx.doi.org/10.1021/ic7003968
Kember M. R.; Williams C. K. Efficient magnesium catalysts for the copolymerization of epoxides and CO2; using water to synthesize polycarbonate polyols. J. Am. Chem. Soc., 2012, 134, 15676-15679. doi:10.1021/ja307096mhttp://dx.doi.org/10.1021/ja307096m
Li B.; Zhang R.; Lu X. B. Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules, 2007, 40, 2303-2307. doi:10.1021/ma062735fhttp://dx.doi.org/10.1021/ma062735f
Li B.; Wu G. P.; Ren W. M.; Wang Y. M.; Rao D. Y.; Lu X. B. Asymmetric, regio- and stereo-selective alternating copolymerization of CO2 and propylene oxide catalyzed by chiral chromium Salan complexes. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 6102-6113. doi:10.1002/pola.22922http://dx.doi.org/10.1002/pola.22922
Nakano K.; Nakamura M.; Nozaki K. Alternating copolymerization of cyclohexene oxide with carbon dioxide catalyzed by (salalen)CrCl complexes. Macromolecules, 2009, 42, 6972-6980. doi:10.1021/ma9012626http://dx.doi.org/10.1021/ma9012626
Buchard A.; Kember M. R.; Sandeman K. G.; Williams C. K. A bimetallic iron (Ⅲ) catalyst for CO2/epoxide coupling. Chem. Commun., 2011, 47, 212-214. doi:10.1039/c0cc02205ehttp://dx.doi.org/10.1039/c0cc02205e
Nakano K.; Kobayashi K.; Ohkawara T.; Imoto H.; Nozaki K. Copolymerization of Epoxides with carbon dioxide catalyzed by iron-corrole complexes: synthesis of a crystalline copolymer. J. Am. Chem. Soc., 2013, 135, 8456-8459. doi:10.1021/ja4028633http://dx.doi.org/10.1021/ja4028633
Lu X. B.; Wang Y. Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew. Chem. Int. Ed., 2004, 43, 3574-3577. doi:10.1002/anie.200453998http://dx.doi.org/10.1002/anie.200453998
Cohen C. T.; Chu T.; Coates G. W. Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J. Am. Chem. Soc., 2005, 127, 10869-10878. doi:10.1021/ja051744lhttp://dx.doi.org/10.1021/ja051744l
Nakano K.; Kamada T.; Nozaki K. Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt (Ⅲ) complex with a piperidinium end-capping arm. Angew. Chem. Int. Ed., 2006, 45, 7274-7277. doi:10.1002/anie.200603132http://dx.doi.org/10.1002/anie.200603132
Lu X. B.; Ren W. M.; Wu G. P. CO2 Copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res., 2012, 45, 1721-1735. doi:10.1021/ar300035zhttp://dx.doi.org/10.1021/ar300035z
Zhang D. Y.; Boopathi S. K.; Hadjichristidis N.; Gnanou Y.; Feng X. S. Metal-free alternating copolymerization of CO2 epoxideswith: fulfilling "green" synthesis and activity. J. Am. Chem. Soc., 2016, 138, 11117-11120. doi:10.1021/jacs.6b06679http://dx.doi.org/10.1021/jacs.6b06679
Wang, Y; Zhang J. Y.; Yang J. L.; Zhang H. K.; Kiriratnikom J.; Zhang C. J.; Chen K. L.; Cao X. H.; Hu L. F.; Zhang X. H.; Tang B. Z. Highly Selective and productive synthesis of a carbon dioxide-based copolymer upon Zwitterionic growth. Macromolecules, 2021, 54, 2178-2186. doi:10.1021/acs.macromol.0c02377http://dx.doi.org/10.1021/acs.macromol.0c02377
Yang G. W.; Zhang Y. Y.; Wu G. P., Modular organoboron catalysts enable transformations with unprecedented reactivity. Acc. Chem. Res., 2021, 54, 4434-4448. doi:10.1021/acs.accounts.1c00620http://dx.doi.org/10.1021/acs.accounts.1c00620
马钰琨, 刘绍峰, 李志波. 有机催化CO2/环氧/酸酐交替共聚合成聚碳酸酯/聚酯及其共聚物. 高分子学报, 2022, 53, 1041–1056. doi:10.11777/j.issn1000-3304.2022.22042http://dx.doi.org/10.11777/j.issn1000-3304.2022.22042
Shen, Z. Q.; Chen, X. H.; Zhang, Y. F., New catalytic-systems for the fixation of carbon-dioxide. 2. Synthesis of high-molecular-weight epichlorohydrin carbon-dioxide copolymer with rare-earth phosphonates triisobutyl-aluminum systems. Macromol. Chem. Phys., 1994, 195, 2003-2011. doi:10.1002/macp.1994.021950610http://dx.doi.org/10.1002/macp.1994.021950610
王莹, 张成建, 王征文, 张兴宏. 有机Lewis酸碱对催化氧硫化碳和环氧氯丙烷交替共聚. 高分子学报, 2021, 52, 499-504. doi:10.11777/j.issn1000-3304.2020.20263http://dx.doi.org/10.11777/j.issn1000-3304.2020.20263
Wu G. P.; Wei S. H.; Ren W. M.; Lu X. B.; Xu T. Q.; Darensbourg D. J. Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt (Ⅲ)-based catalyst systems. J. Am. Chem. Soc., 2011, 133, 15191-15199. doi:10.1021/ja206425jhttp://dx.doi.org/10.1021/ja206425j
Sudakar P.; Sivanesan D.; Yoon S. Copolymerization of epichlorohydrin and CO2 using zinc glutarate: an additional application of ZnGA in polycarbonate synthesis. Macromol. Rapid Commun., 2016, 37, 788-793. doi:10.1002/marc.201500681http://dx.doi.org/10.1002/marc.201500681
Wei R. J.; Zhang X. H.; Du B. Y.; Fan Z. Q.; Qi G. R. Selective production of poly(carbonate-co-ether) over cyclic carbonate for epichlorohydrin and CO2 copolymerization via heterogeneous catalysis of Zn-Co(Ⅲ) double metal cyanide complex. Polymer, 2013, 54, 6357-6362. doi:10.1016/j.polymer.2013.09.040http://dx.doi.org/10.1016/j.polymer.2013.09.040
Aida T.; Sanuki K.; Inoue S. Well-controlled polymerization by metalloporphyrin-synthesis of copolymer with alternating sequence and regulated molecular-weight from cyclic acid anhydride and epoxide catalyzed by the system of aluminum porphyrin coupled with quaternary organic salt. Macromolecules, 1985, 18, 1049-1055. doi:10.1021/ma00148a001http://dx.doi.org/10.1021/ma00148a001
Sun X. K.; Zhang X. H.; Chen S.; Du B. Y.; Wang Q.; Fan Z. Q.; Qi G. R. One-pot terpolymerization of CO2, cyclohexene oxide and maleic anhydride using a highly active heterogeneous double metal cyanide complex catalyst. Polymer, 2010, 51, 5719-5725. doi:10.1016/j.polymer.2010.09.044http://dx.doi.org/10.1016/j.polymer.2010.09.044
Feng Z. B.; Guo J. F. ; Liu S.; Feng G. F.; Zhang X. H. Poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer towards homogeneous dielectric elastomer with high dielectric performance. Chin. Chem. Lett., 2022, 33, 4021-4025. doi:10.1016/j.cclet.2021.11.091http://dx.doi.org/10.1016/j.cclet.2021.11.091
Coulembier O.; Degee P.; Hedrick J. L.; Dubois P. From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(β-malic acid) derivatives. Prog. Polym. Sci., 2006, 31, 723-747. doi:10.1016/j.progpolymsci.2006.08.004http://dx.doi.org/10.1016/j.progpolymsci.2006.08.004
DiCiccio A. M.; Longo J. M.; Rodriguez-Calero G. G.; Coates G. W. Development of highly active and regioselective catalysts for the copolymerization of epoxides with cyclic anhydrides: an unanticipated effect of electronic variation. J. Am. Chem. Soc., 2016, 138, 7107-7113. doi:10.1021/jacs.6b03113http://dx.doi.org/10.1021/jacs.6b03113
Zhang, J. B.; Wang, L. B.; Liu, S. F.; Kang, X. H; Li, Z. B. A Lewis pair as organocatalyst for one-pot synthesis of block copolymers from a mixture of epoxide, anhydride, and CO2. Macromolecules, 2021, 54, 763-772. doi:10.1021/acs.macromol.0c02647http://dx.doi.org/10.1021/acs.macromol.0c02647
Li Z. F.; Qin Y. S.; Zhao X. J.; Wang F. S.; Zhang S. B.; Wang X. H. Synthesis and stabilization of high-molecular-weight poly(propylene carbonate) from Zn-Co-based double metal cyanide catalyst. Eur. Polym. J., 2011, 47, 2152-2157. doi:10.1016/j.eurpolymj.2011.08.004http://dx.doi.org/10.1016/j.eurpolymj.2011.08.004
Liu S. J.; M, Y. Y.; Qiao, L. J.; Qin, Y. S.; Chen, X. S.; Wang, X. H.; Wang, F. S. Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol. Polym. Chem., 2015, 6, 7580-7585. doi:10.1039/c5py00556fhttp://dx.doi.org/10.1039/c5py00556f
Liu S. J.; Qin Y. S.; Chen X. S.; Wang X. H.; Wang F. S. One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent. Polym. Chem., 2014, 5, 6171-6179. doi:10.1039/c4py00578chttp://dx.doi.org/10.1039/c4py00578c
Sun X. K.; Zhang X. H.; Liu F.; Chen S.; Du B. Y.; Wang Q.; Fan Z. Q.; Qi G. R. Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-Co-Ⅲ double metal cyanide complex hybrid catalysts with a nanolamellar structure. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 3128-3139. doi:10.1002/pola.22666http://dx.doi.org/10.1002/pola.22666
Zhang X. H.; Wei R. J.; Sun X. K.; Zhang J. F.; Du B. Y.; Fan Z. Q.; Qi G. R. Selective copolymerization of carbon dioxide with propylene oxide catalyzed by a nanolamellar double metal cyanide complex catalyst at low polymerization temperatures. Polymer, 2011, 52, 5494-5502. doi:10.1016/j.polymer.2011.09.040http://dx.doi.org/10.1016/j.polymer.2011.09.040
Sun X. K.; Zhang X. H.; Wei R. J.; Du B. Y.; Wang Q.; Fan Z. Q.; Qi G. R. Mechanistic insight into initiation and chain transfer reaction of CO2/cyclohexene oxide copolymerization catalyzed by zinc-cobalt double metal cyanide complex catalysts. J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 2924-2934. doi:10.1002/pola.26074http://dx.doi.org/10.1002/pola.26074
Gao Y. G.; Gu L.; Qin Y. S.; Wang X. H.; Wang F. S. Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content. J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 5177-5184. doi:10.1002/pola.26366http://dx.doi.org/10.1002/pola.26366
Zhang X. H.; Chen S.; Wu X. M.; Sun X. K.; Liu F.; Qi G. R. Highly active double metal cyanide complexes: effect of central metal and ligand on reaction of epoxide/CO2. Chin. Chem. Lett., 2007, 18, 887-890. doi:10.1016/j.cclet.2007.05.017http://dx.doi.org/10.1016/j.cclet.2007.05.017
Ding H. N.; Wu X. M.; Han B.; Liu N.; Liu B. Y.; Kim I. Functional polyesters via the regioselective ring-opening copolymerizations of norbornene anhydride with epichlorohydrin. Polymer, 2021, 213, 123199. doi:10.1016/j.polymer.2020.123199http://dx.doi.org/10.1016/j.polymer.2020.123199
Wu G. P.; Wei S. H.; Ren W. M.; Lu X. B.; Li B.; Zu Y. P.; Darensbourg D. J. Alternating copolymerization of CO2 and styrene oxide with Co(Ⅲ)-based catalyst systems: differences between styrene oxide and propylene oxide. Energy Environ. Sci., 2011, 4, 5084-5092. doi:10.1039/c1ee02566jhttp://dx.doi.org/10.1039/c1ee02566j
Darensbourg D. J.; Bottarelli P.; Andreatta J. R. Inquiry into the formation of cyclic carbonates during the (salen)CrX catalyzed CO2/cyclohexene oxide copolymerization process in the presence of ionic initiators. Macromolecules, 2007, 40, 7727-7729. doi:10.1021/ma071206ohttp://dx.doi.org/10.1021/ma071206o
0
浏览量
66
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构