浏览全部资源
扫码关注微信
江南大学化学与材料工程学院 合成与生物胶体教育部重点实验室 无锡 214122
E-mail: 8052900170@jiangnan.edu.cn
纸质出版日期:2023-05-20,
网络出版日期:2023-02-03,
收稿日期:2022-11-25,
录用日期:2022-12-30
扫 描 看 全 文
张青青,陈亚鑫,刘仁等.基于聚苯胺微胶囊的双重自修复防腐涂层[J].高分子学报,2023,54(05):720-730.
Zhang Qing-qing,Chen Ya-xin,Liu Ren,et al.Dual-action Self-healing Anticorrosive Coating Based on Polyaniline Microcapsules[J].ACTA POLYMERICA SINICA,2023,54(05):720-730.
张青青,陈亚鑫,刘仁等.基于聚苯胺微胶囊的双重自修复防腐涂层[J].高分子学报,2023,54(05):720-730. DOI: 10.11777/j.issn1000-3304.2022.22404.
Zhang Qing-qing,Chen Ya-xin,Liu Ren,et al.Dual-action Self-healing Anticorrosive Coating Based on Polyaniline Microcapsules[J].ACTA POLYMERICA SINICA,2023,54(05):720-730. DOI: 10.11777/j.issn1000-3304.2022.22404.
将乳液模板法、光聚合法以及苯胺的界面聚合相结合制备了负载亚麻籽油的聚苯胺微胶囊,并将微胶囊与水性环氧树脂涂层相结合来构筑了具有优异光热转化能力的双重自修复防腐涂层. 当涂层受损后,微胶囊中的自修复剂亚麻籽油释放出来,对涂层进行修复;在近红外光(NIR)的照射下,聚苯胺可以有效地吸收光能并将其转化为热能,使涂层的温度高于其玻璃化转变温度,涂层破损处实现愈合. 聚苯胺微胶囊的加入不仅赋予涂层优异的自修复能力,而且大大增强了其防腐能力. 涂层的表面形貌、电化学与盐雾测试结果表明,聚苯胺微胶囊添加量为10%的涂层在NIR照射3 s内,可以实现快速闭合,恢复了其阻隔性能. 此外,在300 h的盐雾测试后,涂层未产生任何的腐蚀产物,而纯涂层可以明显看到腐蚀现象. 这种双重自修复防腐涂层的超快响应时间和高愈合效率以及优异的防腐性能具有潜在的应用价值.
Smart coatings are ideal for the next generation of anti-corrosion coatings with excellent self-healing and anti-corrosion capabilities
which can repair coating scratches in a timely and autonomous manner. In this work
polyaniline microcapsules loaded with linseed oil were prepared
via
combining emulsion template method
photopolymerization and interfacial polymerization of aniline. The microcapsules were incorporated into water-based epoxy resin coating to construct a dual self-healing anti-corrosion coating with excellent photothermal conversion ability. When coating was damaged
the repair agent (linseed oil) in microcapsules was released to repair the scratch. Under near-infrared (NIR) light irradiation
polyaniline could effectively absorb light energy and generate sufficient heat
which raise the temperature above the glass transition temperature (
T
g
) and thus heal the coating defect. Polyaniline could not only improve the excellent photothermal conversion capability of the coating
but also greatly enhance its anticorrosion ability. Infrared thermal imager recorded the temperature change of the coating under NIR illumination and determined the photothermal conversion performance of the coating. The surface morphology
electrochemical measurement and salt spray test results proved that the coating with 10% polyaniline microcapsule presented an excellent self-healing performance within 3 s of NIR irradiation. In addition
after 300 h of salt spray test
no corrosion products were produced by the coating
while the corrosion phenomenon was obvious in the epoxy coating. EIS measurements results show that the |
Z
|
f
=0.01Hz
value of the Polyaniline microcapsules coating after repair was nearly 4 orders of magnitude different from the |
Z
|
f
=0.01Hz
value of the pure epoxy coating. The triple synergistic effect of the release of the repair agent in the microcapsule
the photothermal effect of polyaniline and its anticorrosive ability makes the coating have ultra-fast healing time
excellent self-healing ability and anticorrosive effect. The ultra-fast response time and high healing efficiency
as well as excellent corrosion protection properties endow this coating with promising applications in anti-corrosion field.
微胶囊聚苯胺光热双重自修复防腐
MicrocapsulePolyanilinePhotothermalDouble-action self-healingCorrosion protection
Li, H.; Qiang, Y. J.; Zhao, W. J.; Zhang, S. T. 2-Mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating. Corros. Sci., 2021, 191, 109715. doi:10.1016/j.corsci.2021.109715http://dx.doi.org/10.1016/j.corsci.2021.109715
Wang X. Y.; Cui Y.; Wang Y. N.; Ban T.; Zhang Y. Y.; Zhang J. S.; Zhu X. L. Preparation and characteristics of crosslinked fluorinated acrylate modified waterborne polyurethane for metal protection coating. Prog. Org. Coat., 2021, 158, 106371. doi:10.1016/j.porgcoat.2021.106371http://dx.doi.org/10.1016/j.porgcoat.2021.106371
Wang X. Y.; Zhang J. Q.; Liu J. C.; Luo J. Phytic acid-based adhesion promoter for UV-curable coating: High performance, low cost, and eco-friendliness. Prog. Org. Coat., 2022, 167, 106834. doi:10.1016/j.porgcoat.2022.106834http://dx.doi.org/10.1016/j.porgcoat.2022.106834
Wang T.; Du J.; Ye S.; Tan L. H.; Fu J. J. Triple-stimuli-responsive smart nanocontainers enhanced self-healing anticorrosion coatings for protection of aluminum alloy. ACS Appl. Mater. Interfaces, 2019, 11(4), 4425-4438. doi:10.1021/acsami.8b19950http://dx.doi.org/10.1021/acsami.8b19950
Zhou C. L.; Li Z.; Li J.; Yuan T. C.; Chen B.; Ma X. Z.; Jiang D.; Luo X. H.; Chen D. C.; Liu Y. L. Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers. Chem. Eng. J., 2020, 385, 123835. doi:10.1016/j.cej.2019.123835http://dx.doi.org/10.1016/j.cej.2019.123835
Zhao X.; Wei J. F.; Li B. C.; Li S. B.; Tian N.; Jing L. Y.; Zhang J. P. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy. J. Colloid Interface Sci., 2020, 575, 140-149. doi:10.1016/j.jcis.2020.04.097http://dx.doi.org/10.1016/j.jcis.2020.04.097
Lai Y.; Kuang X.; Zhu P.; Huang M. M.; Dong X.; Wang D. J. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater., 2018, 30(38), e1802556. doi:10.1002/adma.201802556http://dx.doi.org/10.1002/adma.201802556
Wang F.; Wang W. T.; Zhang C.; Tang J. N.; Zeng X. R.; Wan X. J. Scalable manufactured bio-based polymer nanocomposite with instantaneous near-infrared light-actuated targeted shape memory and remote-controlled accurate self-healing. Compos. B Eng., 2021, 219, 108927. doi:10.1016/j.compositesb.2021.108927http://dx.doi.org/10.1016/j.compositesb.2021.108927
Zou Y. T.; Fang L.; Chen T. Q.; Sun M. L.; Lu C. H.; Xu Z. Z. Near-infrared light and solar light activated self-healing epoxy coating having enhanced properties using MXene flakes as multifunctional fillers. Polymers, 2018, 10(5), 474. doi:10.3390/polym10050474http://dx.doi.org/10.3390/polym10050474
Lutz A.; van den Berg O.; Van Damme J.; Verheyen K.; Bauters E.; de Graeve I.; Du, PrezF. E.; Terryn H. A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Appl. Mater. Interfaces, 2015, 7(1), 175-183. doi:10.1021/am505621xhttp://dx.doi.org/10.1021/am505621x
Xu C. H.; Cao L. M.; Lin B. F.; Liang X. Q.; Chen Y. K. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces, 2016, 8(27), 17728-17737. doi:10.1021/acsami.6b05941http://dx.doi.org/10.1021/acsami.6b05941
黄婷, 陈妍, 孙鹏飞, 范曲立, 黄维. 基于共轭聚合物的纳米粒子用于肿瘤的近红外二区荧光成像及光热治疗. 高分子学报, 2020, 51(4), 346-354. doi:10.11777/j.issn1000-3304.2019.19192http://dx.doi.org/10.11777/j.issn1000-3304.2019.19192
Xu, D. X.; Li, Z. D.; Li, L. S.; Wang, J. 2D MXene nanomaterials: insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater., 2020, 30(47), 2070314. doi:10.1002/adfm.202070314http://dx.doi.org/10.1002/adfm.202070314
Liu Y. B.; Wu Y.; Liu Y. Z.; Xu R. N.; Liu S. J.; Zhou F. Robust photothermal coating strategy for efficient ice removal. ACS Appl. Mater. Interfaces, 2020, 12(41), 46981-46990. doi:10.1021/acsami.0c13367http://dx.doi.org/10.1021/acsami.0c13367
Wu K. Y.; Chen Y. X.; Luo J.; Liu R.; Sun G. Q.; Liu X. Y. Preparation of dual-chamber microcapsule by Pickering emulsion for self-healing application with ultra-high healing efficiency. J. Colloid Interface Sci., 2021, 600, 660-669. doi:10.1016/j.jcis.2021.05.066http://dx.doi.org/10.1016/j.jcis.2021.05.066
Li P. H.; Guo W. C.; Lu Z.; Tian J. F.; Li X. A.; Wang H. Y. UV-responsive single-microcapsule self-healing material with enhanced UV-shielding SiO2/ZnO hybrid shell for potential application in space coatings. Prog. Org. Coat., 2021, 151, 106046. doi:10.1016/j.porgcoat.2020.106046http://dx.doi.org/10.1016/j.porgcoat.2020.106046
潘威豪, 刘仁, 罗静. 紫外光固化聚苯胺防腐涂层的制备与应用. 涂料工业, 2022, 52(3): 1-9. doi:10.12020/j.issn.0253-4312.2022.3.1http://dx.doi.org/10.12020/j.issn.0253-4312.2022.3.1
董佳豪, 潘威豪, 陶俊杰, 罗静. Pickering乳液模板法制备pH响应型双重防腐蚀功能微胶囊. 功能高分子学报, 2020, 33(4): 357-364.
Huang Y.; Deng L. P.; Ju P. F.; Huang L. Y.; Qian H. C.; Zhang D. W.; Li X. G.; Terryn H. A.; Mol J. M. C. Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres. ACS Appl. Mater. Interfaces, 2018, 10(27), 23369-23379. doi:10.1021/acsami.8b06985http://dx.doi.org/10.1021/acsami.8b06985
Ma L. W.; Wang J. K.; Zhang D. W.; Huang Y.; Huang L. Y.; Wang P. J.; Qian H. C.; Li X. G.; Terryn H. A.; Mol J. M. C. Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers. Chem. Eng. J., 2021, 404, 127118. doi:10.1016/j.cej.2020.127118http://dx.doi.org/10.1016/j.cej.2020.127118
姚玉洁, 路崎, 高红, 王献红, 王佛松. 芘对聚苯胺锂硫电池低温性能的影响机制研究. 高分子学报, 2017, (9), 1517-1523. doi:10.11777/j.issn1000-3304.2017.17096http://dx.doi.org/10.11777/j.issn1000-3304.2017.17096
Zou C. Y.; Zhang H. M.; Qiao L. J.; Wang X. H.; Wang F. S. Near neutral waterborne cationic polyurethane from CO2-polyol, a compatible binder to aqueous conducting polyaniline for eco-friendly anti-corrosion purposes. Green Chem., 2020, 22(22), 7823-7831. doi:10.1039/d0gc02592ehttp://dx.doi.org/10.1039/d0gc02592e
孙杨, 张红明, 吕金龙, 王献红, 王佛松. 基于可分散聚苯胺的紫外光固化防腐涂料的研究. 高分子学报, 2016, (1), 105-110. doi:10.11777/j.issn1000-3304.2016.15156http://dx.doi.org/10.11777/j.issn1000-3304.2016.15156
张立畅, 吴凯云, 董佳豪, 罗静, 刘仁. 乳液模板法制备自修复缓蚀双功能微胶囊. 功能高分子学报, 2022, 35(3), 270-278.
Wu K. Y.; Gui T. J.; Dong J. H.; Luo J.; Liu R. Synthesis of robust polyaniline microcapsules via UV-initiated emulsion polymerization for self-healing and anti-corrosion coating. Prog. Org. Coat., 2022, 162, 106592. doi:10.1016/j.porgcoat.2021.106592http://dx.doi.org/10.1016/j.porgcoat.2021.106592
Hu C. B.; Li T. Z.; Yin H. W.; Hu L.; Tang J. T.; Ren K. N. Preparation and corrosion protection of three different acids doped polyaniline/epoxy resin composite coatings on carbon steel. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 612, 126069. doi:10.1016/j.colsurfa.2020.126069http://dx.doi.org/10.1016/j.colsurfa.2020.126069
Zhang L. C.; Wu K. Y.; Chen Y. X.; Liu R.; Luo J. The preparation of linseed oil loaded graphene/polyaniline microcapsule via emulsion template method for self-healing anticorrosion coatings. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 651, 129771. doi:10.1016/j.colsurfa.2022.129771http://dx.doi.org/10.1016/j.colsurfa.2022.129771
Tian Q. W.; Li Y. P.; Jiang S. S.; An L.; Lin J. M.; Wu H. X.; Huang P.; Yang S. P. Tumor pH-responsive albumin/polyaniline assemblies for amplified photoacoustic imaging and augmented photothermal therapy. Small, 2019, 15(42), e1902926. doi:10.1002/smll.201902926http://dx.doi.org/10.1002/smll.201902926
Zhang Y.; Wang Y. J.; Yang X. Q.; Yang Q. L.; Li J.; Tan W. H. Polyaniline nanovesicles for photoacoustic imaging-guided photothermal-chemo synergistic therapy in the second near-infrared window. Small, 2020, 16(35), e2001177. doi:10.1002/smll.202001177http://dx.doi.org/10.1002/smll.202001177
Nguyen H. T.; Phung C. D.; Thapa R. K.; Pham T. T.; Tran T. H.; Jeong J. H.; Ku S. K.; Choi H. G.; Yong C. S.; Kim J. O. Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo-photothermal therapy. Acta Biomater., 2018, 68, 154-167. doi:10.1016/j.actbio.2017.12.033http://dx.doi.org/10.1016/j.actbio.2017.12.033
Wu K. Y.; Wei Z. Y.; Dong Y.; He Y. B.; Liu H.; Sun G. Q.; Luo J. One-pot efficient preparation of microcapsules based on photopolymerization for self-healing coatings. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 642, 128660. doi:10.1016/j.colsurfa.2022.128660http://dx.doi.org/10.1016/j.colsurfa.2022.128660
Liu X. H.; Mishra D. D.; Wang X. B.; Peng H. Y.; Hu C. Q. Towards highly efficient solar-driven interfacial evaporation for desalination. J. Mater. Chem. A, 2020, 8(35), 17907-17937. doi:10.1039/c9ta12612khttp://dx.doi.org/10.1039/c9ta12612k
0
浏览量
74
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构