浏览全部资源
扫码关注微信
广东工业大学高分子材料与工程系 广东省功能软凝聚态物质重点实验室 广州 510006
[ "张力,女,1967年生. 广东工业大学高分子材料与工程系教授. 1988年获得哈尔滨工业大学学士学位,1991年获得黑龙江省科学院石油化学研究所硕士学位,1994年获得中山大学博士学位,1994~1996年在华南理工大学从事博士后研究工作,1996~2008年加入华南师范大学工作,2008年至今在广东工业大学高分子材料与工程系工作. 主要从事“活性”/可控自由基聚合,功能高分子纳米粒子和聚合物自组装等方面的研究内容. E-mail: lizhang@gdut.edu.cn" ]
[ "谭剑波,男,1987年生. 广东工业大学高分子材料与工程系教授,博士生导师. 2009和2014年分别在中山大学获得学士和博士学位,2012~2014年在多伦多大学Mitchell Winnik课题组联合培养,2015年3月入职广东工业大学开展独立研究工作. 2017年入选广东省青年珠江学者,2021年获得广东省自然科学基金杰出青年项目资助,2022年获得国家自然科学基金优秀青年科学基金资助. 主要研究方向为高分子合成方法学和功能聚合物粒子. tanjianbo@gdut.edu.cn" ]
纸质出版日期:2023-06-20,
网络出版日期:2023-02-17,
收稿日期:2022-12-24,
录用日期:2023-01-18
扫 描 看 全 文
林冬妮,张力,谭剑波.室温非均相可逆失活自由基聚合[J].高分子学报,2023,54(06):761-777.
Lin Dong-ni,Zhang Li,Tan Jian-bo.Room-temperature Heterogeneous Reversible Deactivation Radical Polymerization[J].ACTA POLYMERICA SINICA,2023,54(06):761-777.
林冬妮,张力,谭剑波.室温非均相可逆失活自由基聚合[J].高分子学报,2023,54(06):761-777. DOI: 10.11777/j.issn1000-3304.2022.22442.
Lin Dong-ni,Zhang Li,Tan Jian-bo.Room-temperature Heterogeneous Reversible Deactivation Radical Polymerization[J].ACTA POLYMERICA SINICA,2023,54(06):761-777. DOI: 10.11777/j.issn1000-3304.2022.22442.
非均相可逆失活自由基聚合(RDRP)是高效可控制备结构与功能明确聚合物纳米材料的重要方法. 在室温下进行非均相RDRP从聚合技术层面上是一个很小的调整,但这为功能聚合物的可控合成、新非均相RDRP方法的发展及非均相RDRP的机理研究带来了巨大的机遇. 在本文中,我们将综述室温非均相RDRP的最新研究进展,这些研究进展难以通过传统的热引发非均相RDRP实现,包括聚合速率调控、耐氧非均相RDRP体系、新非均相RDRP方法的发展、聚合物纳米材料的形貌调控和功能聚合物纳米材料的合成,最后指出了室温非均相RDRP领域目前存在的关键问题和重要挑战.
Reversible deactivation radical polymerization (RDRP) has become one of the most common methods for the synthesis of well-defined polymers with predetermined molar mass
narrow molar mass distribution
and precise end-group functionality. Depending on the solubility of monomer/polymer in the polymerization system
RDRP can be performed
via
either homogeneous polymerization or heterogeneous polymerization. Compared with homogeneous RDRP
heterogeneous RDRP exhibits significant advantages
such as low viscosity
high polymerization rate
and nanoconfinement effect. More importantly
heterogeneous RDRP enables efficient preparation of well-defined polymer nanomaterials that find applications in many areas. Currently
almost all heterogeneous RDRPs are conducted
via
thermal initiation at high temperatures (
e.g
. 70 ℃)
which is not beneficial for the preparation of many functional polymer nanomaterials. Performing heterogeneous RDRP at room temperature seems to be a minor change in the polymerization process
but this can lead to extensive opportunities for controlled synthesis of functional materials
the development of new heterogeneous RDRP methods
and mechanistic insights into heterogeneous RDRP. Many room-temperature initiations have been successfully introduced into heterogeneous RDRP
such as photoinitiation
enzyme initiation
redox initiation
and sonochemically initiation. In this feature article
we will summarize some recent developments of room-temperature heterogeneous RDRP that are difficult to be achieved
via
traditional heterogeneous RDRP
including the control of polymerization rate using room-temperature initiations
oxygen-tolerant heterogeneous RDRP
via
either enzymatic deoxygenation or photo-induced deoxygenation
the development of new heterogeneous RDRP methods (
e.g
. Z-RAFT mediated dispersion polymerization
wavelength-selective photo-induced heterogeneous RDRP)
morphological control of polymer nanomaterials
and the synthesis of functional polymer nanomaterials (bio-related polymer nanomaterials
epoxy-functionalized polymer nanomaterials
and thermo-responsive polymer nanomarterials). Finally
current challenges and further opportunities of room-temperature heterogeneous RDRP are discussed.
可逆失活自由基聚合非均相聚合室温聚合物纳米材料
Reversible deactivation radical polymerization (RDRP)Heterogeneous polymerizationRoom-temperaturePolymer nanomaterials
Colombani D. Chain-growth control in free radical polymerization. Prog. Polym. Sci., 1997, 22(8), 1649-1720. doi:10.1016/s0079-6700(97)00022-1http://dx.doi.org/10.1016/s0079-6700(97)00022-1
Braunecker W. A.; Matyjaszewski K. Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci., 2007, 32(1), 93-146. doi:10.1016/j.progpolymsci.2007.10.001http://dx.doi.org/10.1016/j.progpolymsci.2007.10.001
Corrigan N.; Jung K.; Moad G.; Hawker C. J.; Matyjaszewski K.; Boyer C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci., 2020, 111, 101311. doi:10.1016/j.progpolymsci.2020.101311http://dx.doi.org/10.1016/j.progpolymsci.2020.101311
Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules, 2012, 45(10), 4015-4039. doi:10.1021/ma3001719http://dx.doi.org/10.1021/ma3001719
Nicolas J.; Guillaneuf Y.; Lefay C.; Bertin D.; Gigmes D.; Charleux B. Nitroxide-mediated polymerization. Prog. Polym. Sci., 2013, 38(1), 63-235. doi:10.1016/j.progpolymsci.2012.06.002http://dx.doi.org/10.1016/j.progpolymsci.2012.06.002
Wang J. S.; Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc., 1995, 117(20), 5614-5615. doi:10.1021/ja00125a035http://dx.doi.org/10.1021/ja00125a035
Chiefari J.; Chong Y. K. B.; Ercole F.; Krstina J.; Jeffery J.; Le T. P. T.; Mayadunne R. T. A.; Meijs G. F.; Moad C. L.; Moad G.; Rizzardo E.; Thang S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998, 31(16), 5559-5562. doi:10.1021/ma9804951http://dx.doi.org/10.1021/ma9804951
Zetterlund P. B.; Kagawa Y.; Okubo M. Controlled/living radical polymerization in dispersed systems. Chem. Rev., 2008, 108(9), 3747-3794. doi:10.1021/cr800242xhttp://dx.doi.org/10.1021/cr800242x
Zetterlund P. B.; Thickett S. C.; Perrier S.; Bourgeat-Lami E.; Lansalot M. Controlled/living radical polymerization in dispersed systems: an update. Chem. Rev., 2015, 115(18), 9745-9800. doi:10.1021/cr500625khttp://dx.doi.org/10.1021/cr500625k
Zetterlund P. B.; D'hooge D. R. The nanoreactor concept: Kinetic features of compartmentalization in dispersed phase polymerization. Macromolecules, 2019, 52(21), 7963-7976. doi:10.1021/acs.macromol.9b01037http://dx.doi.org/10.1021/acs.macromol.9b01037
Jasinski F.; Zetterlund P. B.; Braun A. M.; Chemtob A. Photopolymerization in dispersed systems. Prog. Polym. Sci., 2018, 84, 47-88. doi:10.1016/j.progpolymsci.2018.06.006http://dx.doi.org/10.1016/j.progpolymsci.2018.06.006
Liu D. D.; He J.; Zhang L.; Tan J. B. Heterogenous reversible deactivation radical polymerization at room temperature. Recent advances and future opportunities. ACS Macro Lett., 2019, 8(12), 1660-1669. doi:10.1021/acsmacrolett.9b00870http://dx.doi.org/10.1021/acsmacrolett.9b00870
Gurnani P.; Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Prog. Polym. Sci., 2020, 102, 101209. doi:10.1016/j.progpolymsci.2020.101209http://dx.doi.org/10.1016/j.progpolymsci.2020.101209
Graff R. W.; Wang X. F.; Gao H. F. Exploring self-condensing vinyl polymerization of inimers in microemulsion to regulate the structures of hyperbranched polymers. Macromolecules, 2015, 48(7), 2118-2126. doi:10.1021/acs.macromol.5b00278http://dx.doi.org/10.1021/acs.macromol.5b00278
Ferguson C. J.; Hughes R. J.; Pham B. T. T.; Hawkett B. S.; Gilbert R. G.; Serelis A. K.; Such C. H. Effective ab initio emulsion polymerization under RAFT control. Macromolecules, 2002, 35(25), 9243-9245. doi:10.1021/ma025626jhttp://dx.doi.org/10.1021/ma025626j
Charleux B.; Delaittre G.; Rieger J.; D’Agosto F. Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules, 2012, 45(17), 6753-6765. doi:10.1021/ma300713fhttp://dx.doi.org/10.1021/ma300713f
Xu J. X.; Xiao X.; Zhang Y. Y.; Zhang W. Q.; Sun P. C. RAFT-mediated emulsion polymerization of styrene using brush copolymer as surfactant macro-RAFT agent: effect of the brush copolymer sequence and chemical composition. J. Polym. Sci. A Polym. Chem., 2013, 51(5), 1147-1161. doi:10.1002/pola.26478http://dx.doi.org/10.1002/pola.26478
Wan W. M.; Pan C. Y. Atom transfer radical dispersion polymerization in an ethanol/water mixture. Macromolecules, 2007, 40(25), 8897-8905. doi:10.1021/ma0712854http://dx.doi.org/10.1021/ma0712854
Wan W. M.; Hong C. Y.; Pan C. Y. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem. Commun. (Camb), 2009, (39), 5883-5885. doi:10.1039/b912804bhttp://dx.doi.org/10.1039/b912804b
Li Y. T.; Armes S. P. RAFT synthesis of sterically stabilized methacrylic nanolatexes and vesicles by aqueous dispersion polymerization. Angew. Chem. Int. Ed., 2010, 49(24), 4042-4046. doi:10.1002/anie.201001461http://dx.doi.org/10.1002/anie.201001461
Shen W. Q.; Chang Y. L.; Liu G. Y.; Wang H. F.; Cao A. N.; An Z. S. Biocompatible, antifouling, and thermosensitive core-shell nanogels synthesized by RAFT aqueous dispersion polymerization. Macromolecules, 2011, 44(8), 2524-2530. doi:10.1021/ma200074nhttp://dx.doi.org/10.1021/ma200074n
Tan J. B.; Rao X.; Wu X. H.; Deng H. C.; Yang J. W.; Zeng Z. H. Photoinitiated RAFT dispersion polymerization: a straightforward approach toward highly monodisperse functional microspheres. Macromolecules, 2012, 45(21), 8790-8795. doi:10.1021/ma301799rhttp://dx.doi.org/10.1021/ma301799r
Tan J. B.; Rao X.; Yang J. W.; Zeng Z. H. Synthesis of highly monodisperse surface-functional microspheres by photoinitiated RAFT dispersion polymerization using macro-RAFT agents. Macromolecules, 2013, 46(21), 8441-8448. doi:10.1021/ma401909ahttp://dx.doi.org/10.1021/ma401909a
Li S. T.; He X.; Li Q. L.; Shi P. F.; Zhang W. Q. Synthesis of multicompartment nanoparticles of block copolymer through two macro-RAFT agents co-mediated dispersion polymerization. ACS Macro Lett., 2014, 3(9), 916-921. doi:10.1021/mz500466xhttp://dx.doi.org/10.1021/mz500466x
An Z. S.; Shi Q. H.; Tang W.; Tsung C. K.; Hawker C. J.; Stucky G. D. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc., 2007, 129(46), 14493-14499. doi:10.1021/ja0756974http://dx.doi.org/10.1021/ja0756974
Jiang J. S.; Zhang Y.; Guo X. Z.; Zhang H. Q. Narrow or monodisperse, highly cross-linked, and “living” polymer microspheres by atom transfer radical precipitation polymerization. Macromolecules, 2011, 44(15), 5893-5904. doi:10.1021/ma201038ehttp://dx.doi.org/10.1021/ma201038e
Pan G. Q.; Zhang Y.; Ma Y.; Li C. X.; Zhang H. Q. Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization. Angew. Chem. Int. Ed., 2011, 50(49), 11731-11734. doi:10.1002/anie.201104751http://dx.doi.org/10.1002/anie.201104751
Sun J. T.; Hong C. Y.; Pan C. Y. Recent advances in RAFT dispersion polymerization for preparation of block copolymer aggregates. Polym. Chem., 2013, 4(4), 873-881. doi:10.1039/c2py20612ahttp://dx.doi.org/10.1039/c2py20612a
Warren N. J.; Armes S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc., 2014, 136(29), 10174-10185. doi:10.1021/ja502843fhttp://dx.doi.org/10.1021/ja502843f
Canning S. L.; Smith G. N.; Armes S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules, 2016, 49(6), 1985-2001. doi:10.1021/acs.macromol.5b02602http://dx.doi.org/10.1021/acs.macromol.5b02602
Chen S. L.; Shi P. F.; Zhang W. Q. In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition. Chinese J. Polym. Sci., 2017, 35(4), 455-479. doi:10.1007/s10118-017-1907-8http://dx.doi.org/10.1007/s10118-017-1907-8
Yeow J.; Chapman R.; Gormley A. J.; Boyer C. Up in the air: Oxygen tolerance in controlled/living radical polymerisation. Chem. Soc. Rev., 2018, 47(12), 4357-4387. doi:10.1039/c7cs00587chttp://dx.doi.org/10.1039/c7cs00587c
An N. K.; Chen X.; Yuan J. Y. Non-thermally initiated RAFT polymerization-induced self-assembly. Polym. Chem., 2021, 12(22), 3220-3232. doi:10.1039/d1py00216chttp://dx.doi.org/10.1039/d1py00216c
Tan J. B.; Zhao G. Y.; Zeng Z. H.; Winnik M. A. PMMA microspheres with embedded lanthanide nanoparticles by photoinitiated dispersion polymerization with a carboxy-functional macro-RAFT agent. Macromolecules, 2015, 48(11), 3629-3640. doi:10.1021/acs.macromol.5b00688http://dx.doi.org/10.1021/acs.macromol.5b00688
Tan J. B.; Sun H.; Yu M. G.; Sumerlin B. S.; Zhang L. Photo-PISA: Shedding light on polymerization-induced self-assembly. ACS Macro Lett., 2015, 4(11), 1249-1253. doi:10.1021/acsmacrolett.5b00748http://dx.doi.org/10.1021/acsmacrolett.5b00748
Jiang Y. Y.; Xu N.; Han J.; Yu Q. P.; Guo L.; Gao P.; Lu X. H.; Cai Y. L. The direct synthesis of interface-decorated reactive block copolymer nanoparticles via polymerisation-induced self-assembly. Polym. Chem., 2015, 6(27), 4955-4965. doi:10.1039/c5py00656bhttp://dx.doi.org/10.1039/c5py00656b
Yu Q. P.; Ding Y.; Cao H.; Lu X. H.; Cai Y. L. Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25 ℃. ACS Macro Lett., 2015, 4(11), 1293-1296. doi:10.1021/acsmacrolett.5b00699http://dx.doi.org/10.1021/acsmacrolett.5b00699
Jung K.; Xu J. T.; Zetterlund P.; Boyer C. Visible-light-regulated controlled/living radical polymerization in miniemulsion. ACS Macro Lett., 2015, 4(10), 1139-1143. doi:10.1021/acsmacrolett.5b00576http://dx.doi.org/10.1021/acsmacrolett.5b00576
Yeow J.; Xu J. T.; Boyer C. Polymerization-induced self-assembly using visible light mediated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization. ACS Macro Lett., 2015, 4(9), 984-990. doi:10.1021/acsmacrolett.5b00523http://dx.doi.org/10.1021/acsmacrolett.5b00523
Yeow J.; Boyer C. Photoinitiated polymerization-induced self-assembly (photo-PISA): new insights and opportunities. Adv. Sci. (Weinh), 2017, 4(7), 1700137. doi:10.1002/advs.201700137http://dx.doi.org/10.1002/advs.201700137
Zhang B. H.; Wang X. J.; Zhu A. Q.; Ma K.; Lv Y.; Wang X.; An Z. S. Enzyme-initiated reversible addition-fragmentation chain transfer polymerization. Macromolecules, 2015, 48(21), 7792-7802. doi:10.1021/acs.macromol.5b01893http://dx.doi.org/10.1021/acs.macromol.5b01893
Tan J. B.; Xu Q.; Li X. L.; He J.; Zhang Y. X.; Dai X. C.; Yu L. L.; Zeng R. M.; Zhang L. Enzyme-PISA: an efficient method for preparing well-defined polymer nano-objects under mild conditions. Macromol. Rapid Commun., 2018, 39(9), e1700871. doi:10.1002/marc.201700871http://dx.doi.org/10.1002/marc.201700871
Xu Q.; Zhang Y. X.; Li X. L.; He J.; Tan J. B.; Zhang L. Enzyme catalysis-induced RAFT polymerization in water for the preparation of epoxy-functionalized triblock copolymer vesicles. Polym. Chem., 2018, 9(39), 4908-4916. doi:10.1039/c8py01053fhttp://dx.doi.org/10.1039/c8py01053f
Liu G. Y.; Qiu Q.; Shen W. Q.; An Z. S. Aqueous dispersion polymerization of 2-methoxyethyl acrylate for the synthesis of biocompatible nanoparticles using a hydrophilic RAFT polymer and a redox initiator. Macromolecules, 2011, 44(13), 5237-5245. doi:10.1021/ma200984hhttp://dx.doi.org/10.1021/ma200984h
Dai X. C.; Yu L. L.; Zhang Y. X.; Zhang L.; Tan J. B. Polymerization-induced self-assembly via RAFT-mediated emulsion polymerization of methacrylic monomers. Macromolecules, 2019, 52(19), 7468-7476. doi:10.1021/acs.macromol.9b01689http://dx.doi.org/10.1021/acs.macromol.9b01689
Cao J. P.; Tan Y. X.; Dai X. C.; Chen Y.; Zhang L.; Tan J. B. In situ cross-linking in RAFT-mediated emulsion polymerization: reshaping the preparation of cross-linked block copolymer nano-objects by polymerization-induced self-assembly. Polymer, 2021, 230, 124095. doi:10.1016/j.polymer.2021.124095http://dx.doi.org/10.1016/j.polymer.2021.124095
Piogé S.; Tran T. N.; McKenzie T. G.; Pascual S.; Ashokkumar M.; Fontaine L.; Qiao G. Sono-RAFT polymerization-induced self-assembly in aqueous dispersion: Synthesis of LCST-type thermosensitive nanogels. Macromolecules, 2018, 51(21), 8862-8869. doi:10.1021/acs.macromol.8b01606http://dx.doi.org/10.1021/acs.macromol.8b01606
Wan J.; Fan B.; Thang S. H. Sonochemical preparation of polymer-metal nanocomposites with catalytic and plasmonic properties. Nanoscale Adv., 2021, 3(11), 3306-3315. doi:10.1039/d1na00120ehttp://dx.doi.org/10.1039/d1na00120e
Li S. Z.; Han G.; Zhang W. Q. Cross-linking approaches for block copolymer nano-assemblies via RAFT-mediated polymerization-induced self-assembly. Polym. Chem., 2020, 11(29), 4681-4692. doi:10.1039/d0py00627khttp://dx.doi.org/10.1039/d0py00627k
Huang J.; Guo Y. K.; Gu S.; Han G.; Duan W. F.; Gao C. Q.; Zhang W. Q. Multicompartment block copolymer nanoparticles: Recent advances and future perspectives. Polym. Chem., 2019, 10(25), 3426-3435. doi:10.1039/c9py00452ahttp://dx.doi.org/10.1039/c9py00452a
Zhang W. J.; Hong C. Y.; Pan C. Y. Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery. Macromol. Rapid Commun., 2019, 40(2), e1800279. doi:10.1002/marc.201800279http://dx.doi.org/10.1002/marc.201800279
Liu C.; Hong C. Y.; Pan C. Y. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym. Chem., 2020, 11(22), 3673-3689. doi:10.1039/d0py00455chttp://dx.doi.org/10.1039/d0py00455c
Wang X.; Shen L. L.; An Z. S. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog. Polym. Sci., 2018, 83, 1-27. doi:10.1016/j.progpolymsci.2018.05.003http://dx.doi.org/10.1016/j.progpolymsci.2018.05.003
Lv F.; An Z. S.; Wu P. Y. Efficient access to inverse bicontinuous mesophases via polymerization-induced cooperative assembly. CCS Chem., 2021, 3(8), 2211-2222. doi:10.31635/ccschem.020.202000407http://dx.doi.org/10.31635/ccschem.020.202000407
Penfold N. J. W.; Yeow J.; Boyer C.; Armes S. P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett., 2019, 8(8), 1029-1054. doi:10.1021/acsmacrolett.9b00464http://dx.doi.org/10.1021/acsmacrolett.9b00464
Cao J. P.; Tan Y. X.; Chen Y.; Zhang L.; Tan J. B. Expanding the scope of polymerization-induced self-assembly: Recent advances and new horizons. Macromol. Rapid Commun., 2021, 42(23), e2100498. doi:10.1002/marc.202100498http://dx.doi.org/10.1002/marc.202100498
Niu B.; Chen Y.; Zhang L.; Tan J. B. Organic-inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: Recent developments and future opportunities. Polym. Chem., 2022, 13(18), 2554-2569. doi:10.1039/d2py00180bhttp://dx.doi.org/10.1039/d2py00180b
Cai W. B.; Yang S. Q.; Zhang L. Q.; Chen Y.; Zhang L.; Tan J. B. Efficient synthesis and self-assembly of segmented hyperbranched block copolymers via RAFT-mediated dispersion polymerization using segmented hyperbranched macro-RAFT agents. Macromolecules, 2022, 55(13), 5775-5787. doi:10.1021/acs.macromol.2c00545http://dx.doi.org/10.1021/acs.macromol.2c00545
Wu J. R.; Zhang L.; Chen Y.; Tan J. B. Linear and star block copolymer nanoparticles prepared by heterogeneous RAFT polymerization using an ω,ω-heterodifunctional macro-RAFT agent. ACS Macro Lett., 2022, 11(7), 910-918. doi:10.1021/acsmacrolett.2c00314http://dx.doi.org/10.1021/acsmacrolett.2c00314
Luo X. Y.; Zhang K. L.; Zeng R. M.; Chen Y.; Zhang L.; Tan J. B. Segmented copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using an asymmetric difunctional RAFT agent and the utilization in RAFT-mediated dispersion polymerization. Macromolecules, 2022, 55(1), 65-77. doi:10.1021/acs.macromol.1c02233http://dx.doi.org/10.1021/acs.macromol.1c02233
Liu D. D.; Yang S. Q.; Peng S. J.; Chen Y.; Zhang L.; Tan J. B. Simultaneous synthesis and self-assembly of bottlebrush block copolymers at room temperature via photoinitiated RAFT dispersion polymerization. Macromol. Rapid Commun., 2022, 43(8), e2100921. doi:10.1002/marc.202100921http://dx.doi.org/10.1002/marc.202100921
Chen X.; Liu L.; Huo M.; Zeng M.; Peng L.; Feng A. C.; Wang X. S.; Yuan J. Y. Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex. Angew. Chem. Int. Ed., 2017, 56(52), 16541-16545. doi:10.1002/anie.201709129http://dx.doi.org/10.1002/anie.201709129
Huo M.; Zhang Y. Y.; Zeng M.; Liu L.; Wei Y.; Yuan J. Y. Morphology evolution of polymeric assemblies regulated with fluoro-containing mesogen in polymerization-induced self-assembly. Macromolecules, 2017, 50(20), 8192-8201. doi:10.1021/acs.macromol.7b01437http://dx.doi.org/10.1021/acs.macromol.7b01437
Guan S.; Chen A. H. Influence of spacer lengths on the morphology of biphenyl-containing liquid crystalline block copolymer nanoparticles via polymerization-induced self-assembly. Macromolecules, 2020, 53(15), 6235-6245. doi:10.1021/acs.macromol.0c00959http://dx.doi.org/10.1021/acs.macromol.0c00959
Cao M. J.; Nie H. J.; Hou Y. W.; Han G.; Zhang W. Q. Synthesis of star thermoresponsive amphiphilic block copolymer nano-assemblies and the effect of topology on their thermoresponse. Polym. Chem., 2019, 10(3), 403-411. doi:10.1039/c8py01617hhttp://dx.doi.org/10.1039/c8py01617h
Shi B. Y.; Zhang H.; Liu Y.; Wang J.; Zhou P.; Cao M. Y.; Wang G. W. Development of ICAR ATRP-based polymerization-induced self-assembly and its application in the preparation of organic-inorganic nanoparticles. Macromol. Rapid Commun., 2019, 40(24), 1900547. doi:10.1002/marc.201900547http://dx.doi.org/10.1002/marc.201900547
Cao M. Y.; Zhang Y. X.; Wang J.; Fan X. S.; Wang G. W. ICAR ATRP polymerization-induced self-assembly using a mixture of macroinitiator/stabilizer with different molecular weights. Macromol. Rapid Commun., 2019, 40(20), e1900296. doi:10.1002/marc.201900296http://dx.doi.org/10.1002/marc.201900296
Hurst P. J.; Graham A. A.; Patterson J. P. Gaining structural control by modification of polymerization rate in ring-opening polymerization-induced crystallization-driven self-assembly. ACS Polym. Au, 2022, 2(6), 501-509. doi:10.1021/acspolymersau.2c00027http://dx.doi.org/10.1021/acspolymersau.2c00027
Wan W. M.; Pan C. Y. Formation of polymeric yolk/shell nanomaterial by polymerization-induced self-assembly and reorganization. Macromolecules, 2010, 43(6), 2672-2675. doi:10.1021/ma100021ahttp://dx.doi.org/10.1021/ma100021a
Tan J. B.; Liu D. D.; Bai Y. H.; Huang C. D.; Li X. L.; He J.; Xu Q.; Zhang X. C.; Zhang L. An insight into aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) for the preparation of diblock copolymer nano-objects. Polym. Chem., 2017, 8(8), 1315-1327. doi:10.1039/c6py02135bhttp://dx.doi.org/10.1039/c6py02135b
Tan J. B.; Bai Y. H.; Zhang X. C.; Zhang L. Room temperature synthesis of poly(poly(ethylene glycol) methyl ether methacrylate)-based diblock copolymer nano-objects via photoinitiated polymerization-induced self-assembly (photo-PISA). Polym. Chem., 2016, 7(13), 2372-2380. doi:10.1039/c6py00022chttp://dx.doi.org/10.1039/c6py00022c
Tan J. B.; Huang C. D.; Liu D. D.; Zhang X. C.; Bai Y. H.; Zhang L. Alcoholic photoinitiated polymerization-induced self-assembly (photo-PISA): A fast route toward poly(isobornyl acrylate)-based diblock copolymer nano-objects. ACS Macro Lett., 2016, 5(8), 894-899. doi:10.1021/acsmacrolett.6b00439http://dx.doi.org/10.1021/acsmacrolett.6b00439
Tan J. B.; He J.; Li X. L.; Xu Q.; Huang C. D.; Liu D. D.; Zhang L. Rapid synthesis of well-defined all-acrylic diblock copolymer nano-objects via alcoholic photoinitiated polymerization-induced self-assembly (photo-PISA). Polym. Chem., 2017, 8(44), 6853-6864. doi:10.1039/c7py01652bhttp://dx.doi.org/10.1039/c7py01652b
He J.; Liu D. D.; Tan J. B.; Zhang L. Sodium bis(acyl)phosphane oxide (SBAPO): an efficient photoinitiator for blue light initiated aqueous RAFT dispersion polymerization. Polymer, 2018, 145, 70-79. doi:10.1016/j.polymer.2018.04.071http://dx.doi.org/10.1016/j.polymer.2018.04.071
Luo X. H.; Zhao S. Z.; Chen Y.; Zhang L.; Tan J. B. Switching between thermal initiation and photoinitiation redirects RAFT-mediated polymerization-induced self-assembly. Macromolecules, 2021, 54(6), 2948-2959. doi:10.1021/acs.macromol.1c00038http://dx.doi.org/10.1021/acs.macromol.1c00038
Jia S.; Zhang L.; Chen Y.; Tan J. B. Polymers with multiple functions: α,ω-macromolecular photoinitiators/chain transfer agents used in aqueous photoinitiated polymerization-induced self-assembly. Polym. Chem., 2022, 13(27), 4018-4027. doi:10.1039/d2py00606ehttp://dx.doi.org/10.1039/d2py00606e
Emery O.; Lalot T.; Brigodiot M.; Maréchal E. Free-radical polymerization of acrylamide by horseradish peroxidase-mediated initiation. J. Polym. Sci. A Polym. Chem., 1997, 35(15), 3331-3333. doi:10.1002/(sici)1099-0518(19971115)35:15<3331::aid-pola27>3.0.co;2-bhttp://dx.doi.org/10.1002/(sici)1099-0518(19971115)35:15<3331::aid-pola27>3.0.co;2-b
Paulusse J. M. J.; Sijbesma R. P. Ultrasound in polymer chemistry: revival of an established technique. J. Polym. Sci. A Polym. Chem., 2006, 44(19), 5445-5453. doi:10.1002/pola.21646http://dx.doi.org/10.1002/pola.21646
Ligon S. C.; Husár B.; Wutzel H.; Holman R.; Liska R. Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem. Rev., 2014, 114(1), 557-589. doi:10.1021/cr3005197http://dx.doi.org/10.1021/cr3005197
O'Malley J. J.; Ulmer R. W. Thermal stability of glucose oxidase and its admixtures with synthetic polymers. Biotechnol. Bioeng., 1973, 15(5), 917-925. doi:10.1002/bit.260150509http://dx.doi.org/10.1002/bit.260150509
Wang M.; Zhang J. L.; Guerrero-Sanchez C.; Schubert U. S.; Feng A. C.; Thang S. H. Enzyme degassing for oxygen-sensitive reactions in open vessels of an automated parallel synthesizer: RAFT polymerizations. ACS Comb. Sci., 2019, 21(10), 643-649. doi:10.1021/acscombsci.9b00082http://dx.doi.org/10.1021/acscombsci.9b00082
Chapman R.; Gormley A. J.; Stenzel M. H.; Stevens M. M. Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing. Angew. Chem., 2016, 128(14), 4576-4579. doi:10.1002/ange.201600112http://dx.doi.org/10.1002/ange.201600112
Tan J. B.; Liu D. D.; Bai Y. H.; Huang C. D.; Li X. L.; He J.; Xu Q.; Zhang L. Enzyme-assisted photoinitiated polymerization-induced self-assembly: an oxygen-tolerant method for preparing block copolymer nano-objects in open vessels and multiwell plates. Macromolecules, 2017, 50(15), 5798-5806. doi:10.1021/acs.macromol.7b01219http://dx.doi.org/10.1021/acs.macromol.7b01219
Tan J. B.; Dai X. C.; Zhang Y. X.; Yu L. L.; Sun H.; Zhang L. Photoinitiated polymerization-induced self-assembly via visible light-induced RAFT-mediated emulsion polymerization. ACS Macro Lett., 2019, 8(2), 205-212. doi:10.1021/acsmacrolett.9b00007http://dx.doi.org/10.1021/acsmacrolett.9b00007
Cai W. B.; Liu D. D.; Chen Y.; Zhang L.; Tan J. B. Enzyme-assisted photoinitiated polymerization-induced self-assembly in continuous flow reactors with oxygen tolerance. Chinese J. Polym. Sci., 2021, 39(9), 1127-1137. doi:10.1007/s10118-021-2533-zhttp://dx.doi.org/10.1007/s10118-021-2533-z
Wang Y.; Fu L. Y.; Matyjaszewski K. Enzyme-deoxygenated low parts per million atom transfer radical polymerization in miniemulsion and Ab initio emulsion. ACS Macro Lett., 2018, 7(11), 1317-1321. doi:10.1021/acsmacrolett.8b00711http://dx.doi.org/10.1021/acsmacrolett.8b00711
Ng G.; Yeow J.; Xu J. T.; Boyer C. Application of oxygen tolerant PET-RAFT to polymerization-induced self-assembly. Polym. Chem., 2017, 8(18), 2841-2851. doi:10.1039/c7py00442ghttp://dx.doi.org/10.1039/c7py00442g
Yeow J.; Shanmugam S.; Corrigan N.; Kuchel R. P.; Xu J. T.; Boyer C. A polymerization-induced self-assembly approach to nanoparticles loaded with singlet oxygen generators. Macromolecules, 2016, 49(19), 7277-7285. doi:10.1021/acs.macromol.6b01581http://dx.doi.org/10.1021/acs.macromol.6b01581
Yeow J.; Chapman R.; Xu J. T.; Boyer C. Oxygen tolerant photopolymerization for ultralow Volumes 1. Polym. Chem., 2017, 8(34), 5012-5022. doi:10.1039/c7py00007chttp://dx.doi.org/10.1039/c7py00007c
Xu S. H.; Ng G.; Xu J. T.; Kuchel R. P.; Yeow J.; Boyer C. 2-(Methylthio)ethyl methacrylate: a versatile monomer for stimuli responsiveness and polymerization-induced self-assembly in the presence of air. ACS Macro Lett., 2017, 6(11), 1237-1244. doi:10.1021/acsmacrolett.7b00731http://dx.doi.org/10.1021/acsmacrolett.7b00731
Liu D. D.; Cai W. B.; Zhang L.; Boyer C.; Tan J. B. Efficient photoinitiated polymerization-induced self-assembly with oxygen tolerance through dual-wavelength type I photoinitiation and photoinduced deoxygenation. Macromolecules, 2020, 53(4), 1212-1223. doi:10.1021/acs.macromol.9b02710http://dx.doi.org/10.1021/acs.macromol.9b02710
Yu M. G.; Tan J. B.; Yang J. W.; Zeng Z. H. Z-type and R-type macro-RAFT agents in RAFT dispersion polymerization-another mechanism perspective on PISA. Polym. Chem., 2016, 7(22), 3756-3765. doi:10.1039/c6py00605ahttp://dx.doi.org/10.1039/c6py00605a
Luo X. Y.; Li Z. C.; Zhang L.; Chen Y.; Tan J. B. Mechanistic investigation of the position of reversible addition-fragmentation chain transfer (RAFT) groups in heterogeneous RAFT polymerization. Macromolecules, 2022, 55(12), 4916-4928. doi:10.1021/acs.macromol.2c00827http://dx.doi.org/10.1021/acs.macromol.2c00827
Tan J. B.; Li X. L.; Zeng R. M.; Liu D. D.; Xu Q.; He J.; Zhang Y. X.; Dai X. C.; Yu L. L.; Zeng Z. H.; Zhang L. Expanding the scope of polymerization-induced self-assembly: Z-RAFT-mediated photoinitiated dispersion polymerization. ACS Macro Lett., 2018, 7(2), 255-262. doi:10.1021/acsmacrolett.8b00035http://dx.doi.org/10.1021/acsmacrolett.8b00035
Xu S. H.; Yeow J.; Boyer C. Exploiting wavelength orthogonality for successive photoinduced polymerization-induced self-assembly and photo-crosslinking. ACS Macro Lett., 2018, 7(11), 1376-1382. doi:10.1021/acsmacrolett.8b00741http://dx.doi.org/10.1021/acsmacrolett.8b00741
Huang L. L.; Ding Y.; Ma Y. J.; Wang L.; Liu Q. Z.; Lu X. H.; Cai Y. L. Colloidal stable PIC vesicles and lamellae enabled by wavelength-orthogonal disulfide exchange and polymerization-induced electrostatic self-assembly. Macromolecules, 2019, 52(12), 4703-4712. doi:10.1021/acs.macromol.9b00571http://dx.doi.org/10.1021/acs.macromol.9b00571
Zhang K. L.; Xiao M. H.; Zhang L.; Chen Y.; Tan J. B. Exploiting wavelength orthogonality in photoinitiated RAFT dispersion polymerization and photografting for monodisperse surface-functional polymeric microspheres. ACS Macro Lett., 2022, 11(6), 716-722. doi:10.1021/acsmacrolett.2c00228http://dx.doi.org/10.1021/acsmacrolett.2c00228
Du Y.; Jia S.; Chen Y.; Zhang L.; Tan J. B. Type I photoinitiator-functionalized block copolymer nanoparticles prepared by RAFT-mediated polymerization-induced self-assembly. ACS Macro Lett., 2021, 10(2), 297-306. doi:10.1021/acsmacrolett.1c00014http://dx.doi.org/10.1021/acsmacrolett.1c00014
Khor S. Y.; Quinn J. F.; Whittaker M. R.; Truong N. P.; Davis T. P. Controlling nanomaterial size and shape for biomedical applications via polymerization-induced self-assembly. Macromol. Rapid Commun., 2019, 40(2), e1800438. doi:10.1002/marc.201800438http://dx.doi.org/10.1002/marc.201800438
Deng Y. M.; Yang C. J.; Yuan C. H.; Xu Y. T.; Bernard J.; Dai L. Z.; Gérard J. F. Hybrid organic-inorganic block copolymer nano-objects from RAFT polymerization-induced self-assembly. J. Polym. Sci. A Polym. Chem., 2013, 51(21), 4558-4564. doi:10.1002/pola.26872http://dx.doi.org/10.1002/pola.26872
Zhang Q. C.; Zeng R. M.; Zhang Y. X.; Chen Y.; Zhang L.; Tan J. B. Two polymersome evolution pathways in one polymerization-induced self-assembly (PISA) system. Macromolecules, 2020, 53(20), 8982-8991. doi:10.1021/acs.macromol.0c01624http://dx.doi.org/10.1021/acs.macromol.0c01624
Warren N. J.; Mykhaylyk O. O.; Ryan A. J.; Williams M.; Doussineau T.; Dugourd P.; Antoine R.; Portale G.; Armes S. P. Testing the vesicular morphology to destruction: birth and death of diblock copolymer vesicles prepared via polymerization-induced self-assembly. J. Am. Chem. Soc., 2015, 137(5), 1929-1937. doi:10.1021/ja511423mhttp://dx.doi.org/10.1021/ja511423m
Ma Y. J.; Gao P.; Ding Y.; Huang L. L.; Wang L.; Lu X. H.; Cai Y. L. Visible light initiated thermoresponsive aqueous dispersion polymerization-induced self-assembly. Macromolecules, 2019, 52(3), 1033-1041. doi:10.1021/acs.macromol.8b02490http://dx.doi.org/10.1021/acs.macromol.8b02490
Dai X. C.; Zhang Y. X.; Yu L. L.; Li X. L.; Zhang L.; Tan J. B. Seeded photoinitiated polymerization-induced self-assembly: cylindrical micelles with patchy structures prepared via the chain extension of a third block. ACS Macro Lett., 2019, 8(8), 955-961. doi:10.1021/acsmacrolett.9b00427http://dx.doi.org/10.1021/acsmacrolett.9b00427
Song J. S.; Tronc F.; Winnik M. A. Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles. J. Am. Chem. Soc., 2004, 126(21), 6562-6563. doi:10.1021/ja048862dhttp://dx.doi.org/10.1021/ja048862d
Song J. S.; Winnik, Cross-linkedM. A., monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules, 2005, 38(20), 8300-8307. doi:10.1021/ma050992zhttp://dx.doi.org/10.1021/ma050992z
Song J. S.; Chagal L.; Winnik M. A. Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization. Macromolecules, 2006, 39(17), 5729-5737. doi:10.1021/ma052330fhttp://dx.doi.org/10.1021/ma052330f
Song J. S.; Winnik M. A. Monodisperse micron-sized reactive low molar mass polymer microspheres by two-stage living radical dispersion polymerization of styrene. Macromolecules, 2006, 39(24), 8318-8325. doi:10.1021/ma061321jhttp://dx.doi.org/10.1021/ma061321j
Tan J. B.; Rao X.; Yang J. W.; Zeng Z. H. Monodisperse highly cross-linked “living” microspheres prepared via photoinitiated RAFT dispersion polymerization. RSC Adv., 2015, 5(24), 18922-18931. doi:10.1039/c4ra15224ghttp://dx.doi.org/10.1039/c4ra15224g
Yu L. L.; Dai X. C.; Zhang Y. X.; Zeng Z. H.; Zhang L.; Tan J. B. Better RAFT control is better? Insights into the preparation of monodisperse surface-functional polymeric microspheres by photoinitiated RAFT dispersion polymerization. Macromolecules, 2019, 52(19), 7267-7277. doi:10.1021/acs.macromol.9b01295http://dx.doi.org/10.1021/acs.macromol.9b01295
Zhang Y. X.; Yu L. L.; Dai X. C.; Zhang L.; Tan J. B. Structural difference in macro-RAFT agents redirects polymerization-induced self-assembly. ACS Macro Lett., 2019, 8(9), 1102-1109. doi:10.1021/acsmacrolett.9b00509http://dx.doi.org/10.1021/acsmacrolett.9b00509
Yu L. L.; Zhang Y. X.; Dai X. C.; Zhang L.; Tan J. B. Monodisperse poly(methyl methacrylate) microspheres with tunable carboxyl groups on the surface obtained by photoinitiated RAFT dispersion polymerization. Chem. Commun. (Camb), 2019, 55(54), 7848-7851. doi:10.1039/c9cc03452hhttp://dx.doi.org/10.1039/c9cc03452h
Han S.; Wu J. R.; Zhang Y. X.; Lai J. W.; Chen Y.; Zhang L.; Tan J. B. Utilization of poor RAFT control in heterogeneous RAFT polymerization. Macromolecules, 2021, 54(10), 4669-4681. doi:10.1021/acs.macromol.1c00381http://dx.doi.org/10.1021/acs.macromol.1c00381
Tan J. B.; Zhang X. C.; Liu D. D.; Bai Y. H.; Huang C. D.; Li X. L.; Zhang L. Facile preparation of CO2-responsive polymer nano-objects via aqueous photoinitiated polymerization-induced self-assembly (photo-PISA). Macromol. Rapid Commun., 2017, 38(13), 1600508. doi:10.1002/marc.201600508http://dx.doi.org/10.1002/marc.201600508
Blackman L. D.; Varlas S.; Arno M. C.; Fayter A.; Gibson M. I.; O'Reilly R. K. Permeable protein-loaded polymersome cascade nanoreactors by polymerization-induced self-assembly. ACS Macro Lett., 2017, 6(11), 1263-1267. doi:10.1021/acsmacrolett.7b00725http://dx.doi.org/10.1021/acsmacrolett.7b00725
Blackman L. D.; Varlas S.; Arno M. C.; Houston Z. H.; Fletcher N. L.; Thurecht K. J.; Hasan M.; Gibson M. I.; O’Reilly R. K. Confinement of therapeutic enzymes in selectively permeable polymer vesicles by polymerization-induced self-assembly (PISA) reduces antibody binding and proteolytic susceptibility. ACS Cent. Sci., 2018, 4(6), 718-723. doi:10.1021/acscentsci.8b00168http://dx.doi.org/10.1021/acscentsci.8b00168
He J.; Cao J. P.; Chen Y.; Zhang L.; Tan J. B. Thermoresponsive block copolymer vesicles by visible light-initiated seeded polymerization-induced self-assembly for temperature-regulated enzymatic nanoreactors. ACS Macro Lett., 2020, 9(4), 533-539. doi:10.1021/acsmacrolett.0c00151http://dx.doi.org/10.1021/acsmacrolett.0c00151
Zhang Q. C.; Wang R. M.; Chen Y.; Zhang L.; Tan J. B. Block copolymer vesicles with tunable membrane thicknesses and compositions prepared by aqueous seeded photoinitiated polymerization-induced self-assembly at room temperature. Langmuir, 2022, 38(8), 2699-2710. doi:10.1021/acs.langmuir.1c03430http://dx.doi.org/10.1021/acs.langmuir.1c03430
Liu X. Y.; Gao W. P. In situ growth of self-assembled protein-polymer nanovesicles for enhanced intracellular protein delivery. ACS Appl. Mater. Interfaces, 2017, 9(3), 2023-2028. doi:10.1021/acsami.6b14132http://dx.doi.org/10.1021/acsami.6b14132
Liu X. Y.; Sun M. M.; Sun J. W.; Hu J.; Wang Z. R.; Guo J. W.; Gao W. P. Polymerization induced self-assembly of a site-specific interferon α-block copolymer conjugate into micelles with remarkably enhanced pharmacology. J. Am. Chem. Soc., 2018, 140(33), 10435-10438. doi:10.1021/jacs.8b06013http://dx.doi.org/10.1021/jacs.8b06013
Ma C.; Liu X. M.; Wu G. Y.; Zhou P.; Zhou Y. T.; Wang L.; Huang X. Efficient way to generate protein-based nanoparticles by in situ photoinitiated polymerization-induced self-assembly. ACS Macro Lett., 2017, 6(7), 689-694. doi:10.1021/acsmacrolett.7b00422http://dx.doi.org/10.1021/acsmacrolett.7b00422
Zhang Q.; Zhang Y. N.; Wan Y.; Carvalho W.; Hu L.; Serpe M. J. Stimuli-responsive polymers for sensing and reacting to environmental conditions. Prog. Polym. Sci., 2021, 116, 101386. doi:10.1016/j.progpolymsci.2021.101386http://dx.doi.org/10.1016/j.progpolymsci.2021.101386
Liu Y.; Sun Y.; Zhang W. Q. Synthesis of stimuli-responsive block copolymers and block copolymer nano-assemblies. Chinese J. Chem., 2022, 40(8), 965-972. doi:10.1002/cjoc.202100821http://dx.doi.org/10.1002/cjoc.202100821
Tan J. B.; Bai Y. H.; Zhang X. C.; Huang C. D.; Liu D. D.; Zhang L. Low-temperature synthesis of thermoresponsive diblock copolymer nano-objects via aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) using thermoresponsive macro-RAFT agents. Macromol. Rapid Commun., 2016, 37(17), 1434-1440. doi:10.1002/marc.201600299http://dx.doi.org/10.1002/marc.201600299
He J.; Lin D. N.; Chen Y.; Zhang L.; Tan J. B. One-step preparation of thermo-responsive poly(N-isopropylacrylamide)-based block copolymer nanoparticles by aqueous photoinitiated polymerization-induced self-assembly. Macromol. Rapid Commun., 2021, 42(18), e2100201. doi:10.1002/marc.202100201http://dx.doi.org/10.1002/marc.202100201
Tran T. N.; Piogé S.; Fontaine L.; Pascual S. Hydrogen-bonding UCST-thermosensitive nanogels by direct photo-RAFT polymerization-induced self-assembly in aqueous dispersion. Macromol. Rapid Commun., 2020, 41(13), e2000203. doi:10.1002/marc.202000203http://dx.doi.org/10.1002/marc.202000203
Tan J. B.; Fu L. L.; Zhang X. C.; Bai Y. H.; Zhang L. Photosynthesis of poly(glycidyl methacrylate) microspheres: a component for making covalently cross-linked colloidosomes and organic/inorganic nanocomposites. J. Mater. Sci., 2016, 51(20), 9455-9471. doi:10.1007/s10853-016-0190-3http://dx.doi.org/10.1007/s10853-016-0190-3
Li X. L.; Tan J. B.; Xu Q.; He J.; Zhang L. Photoinitiated seeded RAFT dispersion polymerization: a facile method for the preparation of epoxy-functionalized triblock copolymer nano-objects. Macromol. Rapid Commun., 2018, 39(23), e1800473. doi:10.1002/marc.201800473http://dx.doi.org/10.1002/marc.201800473
Abdelrahman A. I.; Thickett S. C.; Liang Y.; Ornatsky O.; Baranov V.; Winnik M. A. Surface functionalization methods to enhance bioconjugation in metal-labeled polystyrene particles. Macromolecules, 2011, 44(12), 4801-4813. doi:10.1021/ma200582qhttp://dx.doi.org/10.1021/ma200582q
Tan J. B.; Liu D. D.; Huang C. D.; Li X. L.; He J.; Xu Q.; Zhang L. Photoinitiated polymerization-induced self-assembly of glycidyl methacrylate for the synthesis of epoxy-functionalized block copolymer nano-objects. Macromol. Rapid Commun., 2017, 38(15), 1700195. doi:10.1002/marc.201700195http://dx.doi.org/10.1002/marc.201700195
Shahrokhinia A.; Rijal S.; Sonmez Baghirzade B.; Scanga R. A.; Biswas P.; Tafazoli S.; Apul O. G.; Reuther J. F. Chain extensions in PhotoATRP-induced self-assembly (photoATR-PISA): a route to ultrahigh solids concentrations and click nanoparticle networks as adsorbents for water treatment. Macromolecules, 2022, 55(9), 3699-3710. doi:10.1021/acs.macromol.1c02636http://dx.doi.org/10.1021/acs.macromol.1c02636
Zaquen N.; Yeow J.; Junkers T.; Boyer C.; Zetterlund P. B. Visible light-mediated polymerization-induced self-assembly using continuous flow reactors. Macromolecules, 2018, 51(14), 5165-5172. doi:10.1021/acs.macromol.8b00887http://dx.doi.org/10.1021/acs.macromol.8b00887
Wu Z. L.; Fang W. B.; Wu C. Y.; Corrigan N.; Zhang T.; Xu S. H.; Boyer C. An aqueous photo-controlled polymerization under NIR wavelengths: synthesis of polymeric nanoparticles through thick barriers. Chem. Sci., 2022, 13(39), 11519-11532. doi:10.1039/d2sc03952dhttp://dx.doi.org/10.1039/d2sc03952d
Liu Z. F.; Lv Y.; An Z. S. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance. Angew. Chem. Int. Ed., 2017, 56(44), 13852-13856. doi:10.1002/anie.201707993http://dx.doi.org/10.1002/anie.201707993
Zhou F. F.; Li R. Y.; Wang X.; Du S. M.; An Z. S. Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase. Angew. Chem. Int. Ed., 2019, 58(28), 9479-9484. doi:10.1002/anie.201904413http://dx.doi.org/10.1002/anie.201904413
0
浏览量
68
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构