浏览全部资源
扫码关注微信
1.北京分子科学国家研究中心 高分子化学与物理教育部重点实验室 北京大学化学与分子工程学院 北京 100871
2.山西浙大新材料与化工研究院 太原 030032
3.金属材料强度国家重点实验室 陕西省软物质国际联合研究中心 西安交通大学材料科学与工程学院 西安 710049
E-mail: xcye917@xjtu.edu.cn;
E-mail: xhwan@pku.edu.cn
纸质出版日期:2023-10-20,
网络出版日期:2023-07-26,
收稿日期:2023-04-06,
录用日期:2023-06-12
扫 描 看 全 文
李婧,王兆旭,叶曦翀等.手性化合物结晶拆分用“量身定制”聚合物添加剂的高效制备[J].高分子学报,2023,54(10):1498-1508.
Li Jing,Wang Zhao-xu,Ye Xi-chong,et al.Efficient Preparation of "Tailor-Made" Polymeric Additives for the Selective Crystallization of Chiral Compounds[J].ACTA POLYMERICA SINICA,2023,54(10):1498-1508.
李婧,王兆旭,叶曦翀等.手性化合物结晶拆分用“量身定制”聚合物添加剂的高效制备[J].高分子学报,2023,54(10):1498-1508. DOI: 10.11777/j.issn1000-3304.2023.23091.
Li Jing,Wang Zhao-xu,Ye Xi-chong,et al.Efficient Preparation of "Tailor-Made" Polymeric Additives for the Selective Crystallization of Chiral Compounds[J].ACTA POLYMERICA SINICA,2023,54(10):1498-1508. DOI: 10.11777/j.issn1000-3304.2023.23091.
高分子型“量身定制”结晶抑制剂可以在较低添加量下获得出色的结晶拆分效果,但受限于传统“单体—高分子”冗长的合成路线,成本高,结构优化困难. 前期工作中,我们发展了利用非共价相互作用模块化构筑添加剂的高效制备方法,通过聚(乙烯基吡啶)与多种酸性小分子的复合获得了一系列适合簇集晶体对映选择性结晶拆分的添加剂. 为了拓展模块化构筑策略的适用范围,在本工作中,我们选择廉价易得的聚(对乙烯基苯磺酸)与不同碱性手性小分子化合物静电复合制备了一系列高分子型“量身定制”对映选择性结晶抑制剂,其在添加量低至0.5 mol%时仍可以接近10%的产率获得对映体过量值(enantiomeric excess,
ee
%)超过99%的天冬酰胺一水合物晶体. 得益于操作简便的制备过程,实现了添加剂结构的快速筛选和高效优化. 实验证明使用该方法制备的添加剂可以在水、甲醇、异丙醇、丙酮等溶剂中有效拆分多种氨基酸、降压药尼莫地平、止咳药愈创甘油醚、有机合成中间体氢化苯偶姻、1
4-苯并二𫫇
烷甲酸甲酯等手性化合物.
Polymeric "tailor-made" inhibitors can accomplish excellent resolution performance with low adding amount. However
its large-scale application is limited by the tedious "chiral monomer to polymer" synthetic route. In a previous work
we have developed an efficient modular strategy of constructing "tailor-made" supramolecular additives by combining achiral poly(vinylpyridine) and a variety of small chiral molecules through non-covalent interactions. In order to expand the scope of the modular strategy
in this work
we choose the cheap and commercially available polystyrene sulfonic acid as platform macromolecules
and small chiral molecules with primary amine groups or guanidine groups as the side groups to prepare "tailor -made" inhibitors efficiently. Benefiting from the easy preparation
the rapid structure screening and efficient optimization of the polymeric additives have been achieved. It has been proven that additives prepared using this method can be used in water
methanol
isopropanol
and acetone with good performance for the resolution of amino acids
nimodipine
guaifenesin
and synthetic intermediate hydrobenzoin and methyl 2
3-dihydrobenzo[b][1
4]dioxine-2-carboxylate. Combined with molecular docking simulation
effective suggestions are put forward for the rational design of "tailor-made" additives. We recommend that a batch of alternative small molecules could be selected based on structural similarities
and the crystallization resolution should be performed using the molecule with the smallest binding energy value in the molecular docking calculation of conglomerates crystal plane. Therefore
the number of trial and error and the cost of crystallization additive screening are reduced
improving the effectiveness of inhibitor structure design greatly.
结晶拆分量身定制对映选择性模块化制备手性药物
Crystallization resolutionTailor-made additivesEnantioselectivityModular preparationChiral medicine
Kandula J. S.; Rayala V. P. K.; Pullapanthula R. Chirality: an inescapable concept for the pharmaceutical, bio-pharmaceutical, food, and cosmetic industries. Sep. Sci. Plus, 2023, 6(4), 2200131. doi:10.1002/sscp.202200131http://dx.doi.org/10.1002/sscp.202200131
Shi G.; Li Y.; Dai X.; Shen J.; Wan X. H. Effect of pendant stereostructure on backbone conformation and enantioseparation ability of helical polyacetylene-based chiral stationary phases. Chirality, 2022, 34(4), 574-586. doi:10.1002/chir.23414http://dx.doi.org/10.1002/chir.23414
Xu Q.; Wang C.; Zheng D.; Wang Y.; Chen X. B.; Sun D.; Jiang H. A quadruple helicene with a rubicene core: Synthesis, structural analyses and properties. Sci. China Chem., 2021, 64(4), 590-598. doi:10.1007/s11426-020-9913-5http://dx.doi.org/10.1007/s11426-020-9913-5
Shi G.; Dai X.; Xu Q.; Shen J.; Wan X. H. Enantioseparation by high-performance liquid chromatography on proline-derived helical polyacetylenes. Polym. Chem., 2021, 12(2), 242-253. doi:10.1039/d0py01398fhttp://dx.doi.org/10.1039/d0py01398f
Shi G.; Dai X.; Zhou Y.; Zhang J.; Shen J.; Wan X. H. Synthesis and enantioseparation of proline-derived helical polyacetylenes as chiral stationary phases for HPLC. Polym. Chem., 2020, 11(18), 3179-3187. doi:10.1039/d0py00205dhttp://dx.doi.org/10.1039/d0py00205d
史歌, 徐茜, 代枭, 张洁, 沈军, 宛新华. 芳香取代基结构对螺旋聚乙炔高效液相色谱手性固定相手性识别性能的影响. 高等学校化学学报, 2021, 42(8), 2673-2682. doi:10.7503/cjcu20210062http://dx.doi.org/10.7503/cjcu20210062
Lorenz H.; Seidel-Morgenstern A. Processes to separate enantiomers. Angew. Chem. Int. Ed., 2014, 53(5), 1218-1250. doi:10.1002/anie.201302823http://dx.doi.org/10.1002/anie.201302823
Collet A.; Brienne M. J.; Jacques J. Optical resolution by direct crystallization of enantiomer mixtures. Chem. Rev., 1980, 80(3), 215-230. doi:10.1021/cr60325a001http://dx.doi.org/10.1021/cr60325a001
王耀国, 赵绍磊, 杨一纯, 龚俊波, 王静康, 汤伟伟. 手性药物结晶拆分的研究进展. 化工学报, 2019, 70(10): 3651-3662. doi:10.11949/0438-1157.20190718http://dx.doi.org/10.11949/0438-1157.20190718
Xu L.; Wu Y. J.; Gao R. T.; Li S. Y.; Liu N.; Wu Z. Q. Visible helicity induction and memory in polyallene toward circularly polarized luminescence, helicity discrimination, and enantiomer separation. Angew. Chem. Int. Ed., 2023, 62(13), e202217234. doi:10.1002/anie.202217234http://dx.doi.org/10.1002/anie.202217234
Liu N.; Zhou L.; Wu Z. Q. Alkyne-palladium(II)-catalyzed living polymerization of isocyanides: an exploration of diverse structures and functions. Acc. Chem. Res., 2021, 54(20), 3953-3967. doi:10.1021/acs.accounts.1c00489http://dx.doi.org/10.1021/acs.accounts.1c00489
Valenti G.; Tinnemans P.; Baglai I.; Noorduin W. L.; Kaptein B.; Leeman M.; ter Horst J. H.; Kellogg R. M. Combining incompatible processes for deracemization of a praziquantel derivative under flow conditions. Angew. Chem. Int. Ed., 2021, 60(10), 5279-5282. doi:10.1002/anie.202013502http://dx.doi.org/10.1002/anie.202013502
Noorduin W. L.; Izumi T.; Millemaggi A.; Leeman M.; Meekes H.; van Enckevort W. J. P.; Kellogg R. M.; Kaptein B.; Vlieg E.; Blackmond D. G. Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J. Am. Chem. Soc., 2008, 130(4), 1158-1159. doi:10.1021/ja7106349http://dx.doi.org/10.1021/ja7106349
Addadi L.; van Mil J.; Lahav M. Useful impurities for optical resolutions. 2. Generality and mechanism of the rule of reversal. J. Am. Chem. Soc., 1981, 103(5), 1249-1251. doi:10.1021/ja00395a059http://dx.doi.org/10.1021/ja00395a059
Weissbuch I.; Lahav M.; Leiserowitz L. Toward stereochemical control, monitoring, and understanding of crystal nucleation. Cryst. Growth Des., 2003, 3(2), 125-150. doi:10.1021/cg0200560http://dx.doi.org/10.1021/cg0200560
Zhu Y.; Lu M. J.; Gao F.; Zhou C. L.; Jia C. Y.; Wang J. T. Role of tailor-made additives in crystallization from solution: a review. Ind. Eng. Chem. Res., 2023, 62(12), 4800-4816. doi:10.1021/acs.iecr.2c04025http://dx.doi.org/10.1021/acs.iecr.2c04025
Addadi L.; Berkovitch-Yellin Z.; Domb N.; Gati E.; Lahav M.; Leiserowitz L. Resolution of conglomerates by stereoselective habit modifications. Nature, 1982, 296(5852), 21-26. doi:10.1038/296021a0http://dx.doi.org/10.1038/296021a0
Li N.; Wang H.; Zhang J.; Wan X. H. Controlled synthesis of chiral polymers for the kinetic resolution of racemic amino acids. Polym. Chem., 2014, 5(5), 1702-1710. doi:10.1039/c3py01297bhttp://dx.doi.org/10.1039/c3py01297b
Zbaida D.; Weissbuch I.; Shavit-Gati E.; Addadi L.; Leiserowitz L.; Lahav M. Design of chiral polymers for the kinetic resolution of racemic conglomerates. React. Funct. Polym., 1987, 6(2-3), 241-253. doi:10.1016/0167-6989(87)90095-xhttp://dx.doi.org/10.1016/0167-6989(87)90095-x
Berfeld M.; Zbaida D.; Leiserowitz L.; Lahav M. 'Tailor-made' polymers for the removal of lamellar twinning: resolution of α-amino acids by entrainment. Adv. Mater., 1999, 11(4), 328-331. doi:10.1002/(sici)1521-4095(199903)11:4<328::aid-adma328>3.0.co;2-vhttp://dx.doi.org/10.1002/(sici)1521-4095(199903)11:4<328::aid-adma328>3.0.co;2-v
Weissbuch I.; Zbaida D.; Addadi L.; Leiserowitz L.; Lahav M. Design of polymeric inhibitors for the control of crystal polymorphism. Induced enantiomeric resolution at racemic histidine by crystallization at 25 ℃. J. Am. Chem. Soc., 1987, 109(6), 1869-1871. doi:10.1021/ja00240a052http://dx.doi.org/10.1021/ja00240a052
Li B. W.; Li N.; Wang Z. X.; Ye X. C.; Zhang J.; Wan X. H. High-performance nano-splitters containing aggregation-induced emission luminogens for stereoselective crystallization obtained via polymerization-induced self-assembly. Aggregate, 2021, 2(6), e129. doi:10.1002/agt2.129http://dx.doi.org/10.1002/agt2.129
Ye X. C.; Cui J. X.; Li B. W.; Li N.; Wang R.; Yan Z. J.; Tan J. Y.; Zhang J.; Wan X. H. Enantiomer-selective magnetization of conglomerates for quantitative chiral separation. Nat. Commun., 2019, 10, 1964. doi:10.1038/s41467-019-09997-yhttp://dx.doi.org/10.1038/s41467-019-09997-y
Ye X. C.; Zhang J.; Cui J. X.; Wan X. H. Thermo-responsive recoverable polymeric inhibitors for the resolution of racemic amino acids. Chem. Commun., 2018, 54(22), 2785-2787. doi:10.1039/c8cc00333ehttp://dx.doi.org/10.1039/c8cc00333e
Ye X. C.; Cui J. X.; Li B. W.; Li N.; Zhang J.; Wan X. H. Self-reporting inhibitors: a single crystallization process to obtain two optically pure enantiomers. Angew. Chem. Int. Ed., 2018, 57(27), 8120-8124. doi:10.1002/anie.201803480http://dx.doi.org/10.1002/anie.201803480
Mastai Y.; Sedlák M.; Cölfen H.; Antonietti M. The separation of racemic crystals into enantiomers by chiral block copolymers. Chem. Eur. J., 2002, 8(11), 2429-2437. doi:10.1002/1521-3765(20020603)8:11<2429::aid-chem2429>3.0.co;2-6http://dx.doi.org/10.1002/1521-3765(20020603)8:11<2429::aid-chem2429>3.0.co;2-6
Bertrand A.; Lortie F.; Bernard J. Routes to hydrogen bonding chain-end functionalized polymers. Macromol. Rapid Commun., 2012, 33(24), 2062-2091. doi:10.1002/marc.201200508http://dx.doi.org/10.1002/marc.201200508
王志琴, 冯纯, 马晨, 黄晓宇. 聚合物分子刷的高效合成与应用. 高分子学报, 2018, (12), 1467-1481. doi:10.11777/j.issn1000-3304.2018.18199http://dx.doi.org/10.11777/j.issn1000-3304.2018.18199
Zou H.; Wu Q. L.; Zhou L.; Hou X. H.; Liu N.; Wu Z. Q. Chiral recognition and resolution based on helical polymers. Chinese J. Polym. Sci., 2021, 39(12), 1521-1527. doi:10.1007/s10118-021-2615-yhttp://dx.doi.org/10.1007/s10118-021-2615-y
Ilhan F.; Gray M.; Rotello V. M. Reversible side chain modification through noncovalent interactions. "Plug and play" polymers. Macromolecules, 2001, 34(8), 2597-2601. doi:10.1021/ma001700rhttp://dx.doi.org/10.1021/ma001700r
Ruokolainen J.; Mäkinen R.; Torkkeli M.; Mäkelä T.; Serimaa R.; ten Brinke G.; Ikkala O. Switching supramolecular polymeric materials with multiple length scales. Science, 1998, 280(5363), 557-560. doi:10.1126/science.280.5363.557http://dx.doi.org/10.1126/science.280.5363.557
Ujiie S.; Iimura K. Thermal properties and orientational behavior of a liquid-crystalline ion complex polymer. Macromolecules, 1992, 25(12), 3174-3178. doi:10.1021/ma00038a024http://dx.doi.org/10.1021/ma00038a024
Kato T.; Mizoshita N. Self-assembly and phase segregation in functional liquid crystals. Curr. Opin. Solid State Mater. Sci., 2002, 6(6), 579-587. doi:10.1016/s1359-0286(03)00006-8http://dx.doi.org/10.1016/s1359-0286(03)00006-8
Kato T. Self-assembly of phase-segregated liquid crystal structures. Science, 2002, 295(5564), 2414-2418. doi:10.1126/science.1070967-ahttp://dx.doi.org/10.1126/science.1070967-a
Wang H.; Shi H. F.; Ye W. P.; Yao X. K.; Wang Q.; Dong C. M.; Jia W. Y.; Ma H. L.; Cai S. Z.; Huang K. W.; Fu L. S.; Zhang Y. Y.; Zhi J. H.; Gu L.; Zhao Y. L.; An Z. F.; Huang W. Amorphous ionic polymers with color-tunable ultralong organic phosphorescence. Angew. Chem. Int. Ed., 2019, 58(52), 18776-18782. doi:10.1002/anie.201911331http://dx.doi.org/10.1002/anie.201911331
Ye X. C.; Wang Z. X.; Zhang J.; Wan X. H. Noncovalently functionalized commodity polymers as tailor-made additives for stereoselective crystallization. Angew. Chem. Int. Ed., 2021, 60(37), 20243-20248. doi:10.1002/anie.202106603http://dx.doi.org/10.1002/anie.202106603
Walsh M. P.; Barclay J. A.; Begg C. S.; Xuan J. Y.; Johnson N. T.; Cole J. C.; Kitching M. O. Identifying a hidden conglomerate chiral pool in the CSD. JACS Au, 2022, 2(10), 2235-2250. doi:10.1021/jacsau.2c00394http://dx.doi.org/10.1021/jacsau.2c00394
0
浏览量
43
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构