浏览全部资源
扫码关注微信
东北林业大学材料科学与工程学院 生物质材料科学与技术教育部重点实验室 哈尔滨 150040
E-mail: lizgmse@nefu.edu.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-09-11,
收稿日期:2023-05-12,
录用日期:2023-07-13
扫 描 看 全 文
魏久洋,胡锦东,刘旸等.高性能壳聚糖基准固态离子热原电池构建及其热电性能研究[J].高分子学报,2023,54(12):1911-1924.
Wei Jiu-yang,Hu Jin-dong,Liu Yang,et al.Construction of High Performance Chitosan Based Solid State Ion Thermoelectric Battery and Thermoelectric Performance[J].Acta Polymerica Sinica,2023,54(12):1911-1924.
魏久洋,胡锦东,刘旸等.高性能壳聚糖基准固态离子热原电池构建及其热电性能研究[J].高分子学报,2023,54(12):1911-1924. DOI: 10.11777/j.issn1000-3304.2023.23132.
Wei Jiu-yang,Hu Jin-dong,Liu Yang,et al.Construction of High Performance Chitosan Based Solid State Ion Thermoelectric Battery and Thermoelectric Performance[J].Acta Polymerica Sinica,2023,54(12):1911-1924. DOI: 10.11777/j.issn1000-3304.2023.23132.
利用高分子基准固态离子热原电池将低品质热能转化为电能是提升能源综合利用的有效途径. 以壳聚糖为基体,通过接枝双氰胺和胍盐离子,制备了兼具高离子电导率和高热功率的双胍盐壳聚糖-FeCl
2/3
基离子型热电材料(CGH-G),并使材料的柔性和尺寸稳定性均有所增强. 通过引入2种带正电荷的氨基离子,显著增强了离子热电材料的热扩散效应,使其热功率由2.16 mV/K提升至4.84 mV/K,同时显著降低了热电材料的阻抗. 将所制备的壳聚糖基离子热电材料组装成准固态离子热原电池,在温差为25 K、外加5 Ω负载的环境条件下,其功率密度达1.33 W/m
2
的同时可实现25.43 J/m
2
的高能量密度输出. 此外,多个柔性离子热原电池串联后展现出较高的输出稳定性,显示出壳聚糖基离子热电材料在废弃能源利用方面的广阔应用前景.
The application of polymer based solid-state ion thermoelectric batteries to convert low-quality heat energy into electrical energy is an effective way to improve energy comprehensive utilization. Using chitosan as the matrix
a high ion conductivity and high thermal power based ion thermoelectric material (CGH-G) was prepared by grafting dicyandiamide and guanidine ions
which enhances the flexibility and dimensional stability of the material. Due to the introduction of two positively charged amino ions
the thermal diffusion effect of ion pairs is significantly enhanced
while the thermal work rate of the material is increased from 2.16 mV/K to 4.84 mV/K
and the impedance of the thermoelectric material is significantly reduced. The prepared chitosan based ion thermoelectric material is assembled into a quasi-solid-state ion thermoelectric cell. Under the environmental conditions of a temperature difference of 25 K and an external 5 Ω load
the power density can reach 1.33 W/m
2
while achieving a high energy density output of 25.43 J/m
2
. In addition
multiple flexible ion thermoelectric batteries connected in series exhibit high output stability
demonstrating the broad application prospects of chitosan-based ion thermoelectric materials in waste energy utilization.
壳聚糖准固态离子热电材料离子热原电池功率密度能量密度
ChitosanQuasi solid state ion thermoelectric materialsIon pyrogen batteryPower densityEnergy density
Sootsman J. R.; Chung D. Y.; Kanatzidis M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed., 2009, 48(46), 8616-8639. doi:10.1002/anie.200900598http://dx.doi.org/10.1002/anie.200900598
Newman J. Thermoelectric effects in electrochemical systems. Ind. Eng. Chem. Res., 1995, 34(10), 3208-3216. doi:10.1021/ie00037a005http://dx.doi.org/10.1021/ie00037a005
Wu X.; Gao N. W.; Jia H. Y.; Wang Y. P. Thermoelectric converters based on ionic conductors. Chem. Asian J., 2021, 16(2), 129-141. doi:10.1002/asia.202001331http://dx.doi.org/10.1002/asia.202001331
Kim S. L.; Lin H. T.; Yu C. Thermally chargeable solid-state supercapacitor. Adv. Energy Mater., 2016, 6(18), 1600546. doi:10.1002/aenm.201600546http://dx.doi.org/10.1002/aenm.201600546
Wu J.; Black J. J.; Aldous L. Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells. Electrochim. Acta, 2017, 225, 482-492. doi:10.1016/j.electacta.2016.12.152http://dx.doi.org/10.1016/j.electacta.2016.12.152
Lee J. Q.; Silvester D. S. Low-cost microarray thin-film electrodes with ionic liquid gel-polymer electrolytes for miniaturised oxygen sensing. Analyst, 2016, 141(12), 3705-3713. doi:10.1039/c6an00281ahttp://dx.doi.org/10.1039/c6an00281a
Guo Y. H.; Bae J.; Zhao F.; Yu G. H. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem., 2019, 1(3), 335-348. doi:10.1016/j.trechm.2019.03.005http://dx.doi.org/10.1016/j.trechm.2019.03.005
Liu C.; Li Q. K.; Wang S. J.; Liu W. S.; Fang N. X.; Feng S. P. Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano Energy, 2022, 92, 106738. doi:10.1016/j.nanoen.2021.106738http://dx.doi.org/10.1016/j.nanoen.2021.106738
Wang X.; Huang Y. T.; Liu C.; Mu K. Y.; Li K. H.; Wang S. J.; Yang Y. A.; Wang L.; Su C. H.; Feng S. P. Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun., 2019, 10, 4151. doi:10.1038/s41467-019-12144-2http://dx.doi.org/10.1038/s41467-019-12144-2
Fan G. D.; Liu K. K.; Su H.; Luo Y. Q.; Geng Y.; Chen L. Y.; Wang B. J.; Mao Z. P.; Sui X. F.; Feng X. L. Mesoscopic confined ionic thermoelectric materials with excellent ionic conductivity for waste heat harvesting. Chem. Eng. J., 2022, 434, 134702. doi:10.1016/j.cej.2022.134702http://dx.doi.org/10.1016/j.cej.2022.134702
Wu M. L.; Zhang X.; Zhao Y.; Yang C. P.; Jing S. S.; Wu Q. S.; Brozena A.; Miller J. T.; Libretto N. J.; Wu T. P.; Bhattacharyya S.; Garaga M. N.; Zhang Y. G.; Qi Y.; Greenbaum S. G.; Briber R. M.; Yan Y. S.; Hu L. B. A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nat. Nanotechnol., 2022, 17(6), 629-636. doi:10.1038/s41565-022-01112-5http://dx.doi.org/10.1038/s41565-022-01112-5
Zhou Y. T.; Zhang S.; Buckingham M. A.; Aldous L.; Beirne S.; Wu C.; Liu Y. Q.; Wallace G.; Chen J. Novel porous thermosensitive gel electrolytes for wearable thermo-electrochemical cells. Chem. Eng. J., 2022, 449, 137775. doi:10.1016/j.cej.2022.137775http://dx.doi.org/10.1016/j.cej.2022.137775
Horike S.; Wei Q. S.; Kirihara K.; Mukaida M.; Sasaki T.; Koshiba Y.; Fukushima T.; Ishida K. Outstanding electrode-dependent seebeck coefficients in ionic hydrogels for thermally chargeable supercapacitor near room temperature. ACS Appl. Mater. Interfaces, 2020, 12(39), 43674-43683. doi:10.1021/acsami.0c11752http://dx.doi.org/10.1021/acsami.0c11752
Cheng H. L.; He X.; Fan Z.; Ouyang J. Y. Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties. Adv. Energy Mater., 2019, 9(32), 1901085. doi:10.1002/aenm.201901085http://dx.doi.org/10.1002/aenm.201901085
Han C. G.; Qian X.; Li Q. K.; Deng B.; Zhu Y. B.; Han Z. J.; Zhang W. Q.; Wang W. C.; Feng S. P.; Chen G.; Liu W. S. Giant thermopower of ionic gelatin near room temperature. Science, 2020, 368(6495), 1091-1098. doi:10.1126/science.aaz5045http://dx.doi.org/10.1126/science.aaz5045
He X.; Cheng H. L.; Yue S. Z.; Ouyang J. Y. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties. J. Mater. Chem. A, 2020, 8(21), 10813-10821. doi:10.1039/d0ta04100ahttp://dx.doi.org/10.1039/d0ta04100a
Wu A. Y.; Li X. Y.; Lee D.; Li J.; Yun J.; Jiang C.; Li Z. K.; Lee S. W. Thermoresponsive ionic liquid for electrochemical low-grade heat harvesting. Nano Energy, 2023, 105, 108022. doi:10.1016/j.nanoen.2022.108022http://dx.doi.org/10.1016/j.nanoen.2022.108022
Li Y. C.; Li Q. K.; Zhang X. B.; Zhang J. J.; Wang S. H.; Lai L. Q.; Zhu K.; Liu W. S. Realizing record-high output power in flexible gelatin/GTA-KCl-FeCN4-/3- ionic thermoelectric cells enabled by extending the working temperature range. Energy Environ. Sci., 2022, 15(12), 5379-5390. doi:10.1039/d2ee02792ehttp://dx.doi.org/10.1039/d2ee02792e
Jung Y.; Jeong Y. C.; Kim J. H.; Kim Y. S.; Kim T.; Cho Y. S.; Yang S. J.; Park C. R. One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries. Energy Storage Mater., 2016, 5, 1-7. doi:10.1016/j.ensm.2016.05.006http://dx.doi.org/10.1016/j.ensm.2016.05.006
Baumgarth, M.; Beier, N.; Gericke, R. (2-Methyl-5-(methylsulfonyl)benzoyl)guanidine Na+/H+ antiporter inhibitors. J. Med. Chem., 1997, 40(13), 2017-2034. doi:10.1021/jm960768nhttp://dx.doi.org/10.1021/jm960768n
Wan Y.; Creber K. A. M.; Peppley B.; Bui V. T. Ionic conductivity and related properties of crosslinked chitosan membranes. J. Appl. Polym. Sci., 2003, 89(2), 306-317. doi:10.1002/app.12090http://dx.doi.org/10.1002/app.12090
Uragami T.; Yoshida F.; Sugihara M. Studies on syntheses and permeabilities of special polymer membranes, 46. Active transport of chlorine ions through crosslinked chitosan membranes. Macromol. Rapid Commun., 1983, 4(2), 99-102. doi:10.1002/marc.1983.030040210http://dx.doi.org/10.1002/marc.1983.030040210
Wan Y.; Peppley B.; Creber K. A. M.; Bui V. T. Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells. J. Power Sources, 2010, 195(12), 3785-3793. doi:10.1016/j.jpowsour.2009.11.123http://dx.doi.org/10.1016/j.jpowsour.2009.11.123
Sai M. Z.; Zhong S. L.; Tang Y.; Ma W. T.; Sun Y. G.; Ding D. R. Research on the preparation and antibacterial properties of 2-N-thiosemicarbazide-6-O-hydroxypropyl chitosan membranes with iodine. J. Appl. Polym. Sci., 2014, 131(15), 40535. doi:10.1002/app.40535http://dx.doi.org/10.1002/app.40535
Ge H. C.; Pang W.; Luo D. K. Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr. Polym., 2006, 66(3), 372-378. doi:10.1016/j.carbpol.2006.03.017http://dx.doi.org/10.1016/j.carbpol.2006.03.017
Huang R. H.; Yang B. C.; Liu Q. A. Removal of chromium(VI) ions from aqueous solutions with protonated crosslinked chitosan. J. Appl. Polym. Sci., 2013, 129(2), 908-915. doi:10.1002/app.38685http://dx.doi.org/10.1002/app.38685
Byon H. R.; Suntivich J.; Shao-Horn Y. Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater., 2011, 23(15), 3421-3428. doi:10.1021/cm2000649http://dx.doi.org/10.1021/cm2000649
Qi L. F.; Xu Z. R.; Jiang X.; Hu C. H.; Zou X. F. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res., 2004, 339(16), 2693-2700. doi:10.1016/j.carres.2004.09.007http://dx.doi.org/10.1016/j.carres.2004.09.007
Rozière J.; Jones D. J. Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu. Rev. Mater. Res., 2003, 33, 503-555. doi:10.1146/annurev.matsci.33.022702.154657http://dx.doi.org/10.1146/annurev.matsci.33.022702.154657
Buckingham M. A.; Zhang S. A.; Liu Y. Q.; Chen J.; Marken F.; Aldous L. Thermogalvanic and thermocapacitive behavior of superabsorbent hydrogels for combined low-temperature thermal energy conversion and harvesting. ACS Appl. Energy Mater., 2021, 4(10), 11204-11214. doi:10.1021/acsaem.1c02060http://dx.doi.org/10.1021/acsaem.1c02060
Hu K.; Dickson J. M. Development and characterization of poly(vinylidene fluoride)-poly(acrylic acid) pore-filled pH-sensitive membranes. J. Membr. Sci., 2007, 301(1-2), 19-28. doi:10.1016/j.memsci.2007.05.031http://dx.doi.org/10.1016/j.memsci.2007.05.031
Wang F.; Jeon J. H.; Park S.; Kee C. D.; Kim S. J.; Oh I. K. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups. Soft Matter, 2016, 12(1), 246-254. doi:10.1039/c5sm00707khttp://dx.doi.org/10.1039/c5sm00707k
Xu H.; Tu J.; Ji J.; Liang L.; Li H. Z.; Li P. Y.; Zhang X. Z.; Gong Q. Y.; Guo X. D. Ultra-high-strength self-healing supramolecular polyurethane based on successive loose hydrogen-bonded hard segment structures. Eur. Polym. J., 2022, 177, 111437. doi:10.1016/j.eurpolymj.2022.111437http://dx.doi.org/10.1016/j.eurpolymj.2022.111437
裴莹, 张俐娜, 王慧媛, 张先正, 徐敏. 纤维素/明胶复合膜的超分子结构与性能. 高分子学报, 2011, (9), 1098-1104.
Bai C. H.; Wang Z. S.; Yang S. A.; Cui X. J.; Li X. B.; Yin Y. F.; Zhang M.; Wang T.; Sang S. B.; Zhang W. D.; Zhang H. L. Wearable electronics based on the gel thermogalvanic electrolyte for self-powered human health monitoring. ACS Appl. Mater. Interfaces, 2021, 13(31), 37316-37322. doi:10.1021/acsami.1c12443http://dx.doi.org/10.1021/acsami.1c12443
Agmon N. The grotthuss mechanism. Chem. Phys. Lett., 1995, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-jhttp://dx.doi.org/10.1016/0009-2614(95)00905-j
Shigematsu A.; Yamada T.; Kitagawa H. Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc., 2011, 133(7), 2034-2036. doi:10.1021/ja109810whttp://dx.doi.org/10.1021/ja109810w
Laschuk N. O.; Easton E. B.; Zenkina O. V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv., 2021, 11(45), 27925-27936. doi:10.1039/d1ra03785dhttp://dx.doi.org/10.1039/d1ra03785d
Trollund E.; Ardiles P.; Aguirre M. J.; Biaggio S. R.; Rocha-Filho R. C. Spectroelectrochemical and electrical characterization of poly(cobalt-tetraaminophthalocyanine)-modified electrodes: electrocatalytic oxidation of hydrazine. Polyhedron, 2000, 19(22-23), 2303-2312. doi:10.1016/s0277-5387(00)00493-9http://dx.doi.org/10.1016/s0277-5387(00)00493-9
Zhao D.; Martinelli A.; Willfahrt A.; Fischer T.; Bernin D.; Khan Z. U.; Shahi M.; Brill J.; Jonsson M. P.; Fabiano S.; Crispin X. Polymer gels with tunable ionic seebeck coefficient for ultra-sensitive printed thermopiles. Nat. Commun., 2019, 10, 1093. doi:10.1038/s41467-019-08930-7http://dx.doi.org/10.1038/s41467-019-08930-7
Chi C.; An M.; Qi X.; Li Y.; Zhang R. H.; Liu G. Z.; Lin C. J.; Huang H.; Dang H.; Demir B.; Wang Y.; Ma W. G.; Huang B. L.; Zhang X. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nat. Commun., 2022, 13, 221. doi:10.1038/s41467-021-27885-2http://dx.doi.org/10.1038/s41467-021-27885-2
Hu Y.; Chen M. Z.; Qin C. R.; Zhang J. P.; Lu A. Cellulose ionic conductor with tunable seebeck coefficient for low-grade heat harvesting. Carbohydr. Polym., 2022, 292, 119650. doi:10.1016/j.carbpol.2022.119650http://dx.doi.org/10.1016/j.carbpol.2022.119650
Augustyn V.; Simon P.; Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7(5), 1597-1614. doi:10.1039/c3ee44164dhttp://dx.doi.org/10.1039/c3ee44164d
Tang N.; Peng Z.; Guo R. L.; An M.; Chen X. D.; Li X. B.; Yang N.; Zang J. F. Thermal transport in soft PAAm hydrogels. Polymers, 2017, 9(12), 688. doi:10.3390/polym9120688http://dx.doi.org/10.3390/polym9120688
Russo M.; Warren H.; Spinks G. M.; MacFarlane D. R.; Pringle J. M. Hydrogels containing the ferri/ferrocyanide redox couple and ionic liquids for thermocells. Aust. J. Chem., 2019, 72(2), 112-121. doi:10.1071/ch18395http://dx.doi.org/10.1071/ch18395
Zong Y. D.; Li H. B.; Li X.; Lou J.; Ding Q. J.; Liu Z. Q.; Jiang Y. F.; Han W. J. Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chem. Eng. J., 2022, 433, 134550. doi:10.1016/j.cej.2022.134550http://dx.doi.org/10.1016/j.cej.2022.134550
Yang P. H.; Liu K.; Chen Q. A.; Mo X. B.; Zhou Y. S.; Li S.; Feng G. A.; Zhou J. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew. Chem. Int. Ed., 2016, 55(39), 12050-12053. doi:10.1002/anie.201606314http://dx.doi.org/10.1002/anie.201606314
Liu Y. Q.; Zhang S. A.; Zhou Y. T.; Buckingham M. A.; Aldous L.; Sherrell P. C.; Wallace G. G.; Ryder G.; Faisal S.; Officer D. L.; Beirne S.; Chen J. Advanced wearable thermocells for body heat harvesting. Adv. Energy Mater., 2020, 10(48), 2002539. doi:10.1002/aenm.202002539http://dx.doi.org/10.1002/aenm.202002539
Gao W.; Lei Z. Y.; Zhang C. B.; Liu X. D.; Chen Y. P. Stretchable and freeze-tolerant organohydrogel thermocells with enhanced thermoelectric performance continually working at subzero temperatures. Adv. Funct. Mater., 2021, 31(43), 2104071. doi:10.1002/adfm.202104071http://dx.doi.org/10.1002/adfm.202104071
Malik Y. T.; Akbar Z. A.; Seo J. Y.; Cho S.; Jang S. Y.; Jeon J. W. Self-healable organic-inorganic hybrid thermoelectric materials with excellent ionic thermoelectric properties. Adv. Energy Mater., 2022, 12(6), 2103070. doi:10.1002/aenm.202103070http://dx.doi.org/10.1002/aenm.202103070
Li Y. C.; Li Q. K.; Zhang X. B.; Deng B. A.; Han C. G.; Liu W. S. 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4-/3- ionic thermoelectric cells. Adv. Energy Mater., 2022, 12(14), 2103666. doi:10.1002/aenm.202103666http://dx.doi.org/10.1002/aenm.202103666
Jeong M.; Noh J.; Islam M. Z.; Kim K.; Sohn A.; Kim W.; Yu C. Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit. Adv. Funct. Mater., 2021, 31(29), 2011016. doi:10.1002/adfm.202011016http://dx.doi.org/10.1002/adfm.202011016
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50(10), 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构